Observation of surface plasmon polaritons in 2D electron gas of surface electron accumulation in InN nanostructures

被引:6
|
作者
Madapu, Kishore K. [1 ]
Sivadasan, A. K. [1 ,3 ]
Baral, Madhusmita [2 ]
Dhara, Sandip [1 ]
机构
[1] Homi Bhabha Natl Inst, Indira Gandhi Ctr Atom Res, Surface & Nanosci Div, Nanomat Characterizat & Sensors Sect, Kalpakkam 603102, Tamil Nadu, India
[2] Homi Bhabha Natl Inst, Raja Ramanna Ctr Adv Technol, Synchrotron Utilizat Sect, Indore 452013, Madhya Pradesh, India
[3] Govt Higher Secondary Sch, Pazhayannur 680587, Kerala, India
关键词
plasmonics; SPR; SPP; 2D plasmons; NSOM; III-V nitrides; OPTICAL-PROPERTIES; GRAPHENE PLASMONICS; DIRAC PLASMONS; RESONANCES; MICROSCOPY; METAMATERIALS; NANOPARTICLES; NANOCRYSTALS; SCATTERING; INVERSION;
D O I
10.1088/1361-6528/aabe60
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, heavily doped semiconductors have been emerging as an alternative to low-loss plasmonic materials. InN, belonging to the group III nitrides, possesses the unique property of surface electron accumulation (SEA), which provides a 2D electron gas (2DEG) system. In this report, we demonstrated the surface plasmon properties of InN nanoparticles originating from SEA using the real-space mapping of the surface plasmon fields for the first time. The SEA is confirmed by Raman studies, which are further corroborated by photoluminescence and photoemission spectroscopic studies. The frequency of 2DEG corresponding to SEA is found to be in the THz region. The periodic fringes are observed in the near-held scanning optical microscopic images of InN nanostructures. The observed fringes are attributed to the interference of propagated and back-reflected surface plasmon polaritons (SPPs). The observation of SPPs is solely attributed to the 2DEG corresponding to the SEA of InN. In addition, a resonance kind of behavior with the enhancement of the near-held intensity is observed in the near-held images of InN nanostructures. Observation of SPPs indicates that InN with SEA can be a promising THz plasmonic material for light confinement.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Observation of Graphene Surface Plasmon Polaritons Excited by Free Electron Beam
    Hu, Min
    Gong, Sen
    Zhao, Tao
    Zhong, Renbin
    Yu, Chengpeng
    Liu, Shenggang
    2017 42ND INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2017,
  • [2] Phonon-plasmon coupling in electron surface accumulation layers in InN nanocolumns
    Lazic, S.
    Gallardo, E.
    Calleja, J. M.
    Agullo-Rueda, F.
    Grandal, J.
    Sanchez-Garcia, M. A.
    Calleja, E.
    Luna, E.
    Trampert, A.
    PHYSICAL REVIEW B, 2007, 76 (20):
  • [3] Electron beam excitation of surface plasmon polaritons
    Gong, Sen
    Hu, Min
    Zhong, Renbin
    Chen, Xiaoxing
    Zhang, Ping
    Zhao, Tao
    Liu, Shenggang
    OPTICS EXPRESS, 2014, 22 (16): : 19252 - 19261
  • [4] Sulfur passivation of InN surface electron accumulation
    Bailey, L. R.
    Veal, T. D.
    Kendrick, C. E.
    Durbin, S. M.
    McConville, C. F.
    APPLIED PHYSICS LETTERS, 2009, 95 (19)
  • [5] ELECTRON DELOCALIZATION IN THE 2D ELECTRON-GAS AT A SILICON (100) SURFACE
    DOLGOPOLOV, VT
    SHASHKIN, AA
    ZHITENEV, NB
    DOROZHKIN, SI
    JETP LETTERS, 1986, 43 (08) : 466 - 470
  • [6] Nonlinear surface polaritons in 2D electron system in high magnetic field
    Beletskii, NN
    Bludov, YV
    EUROPEAN PHYSICAL JOURNAL B, 2002, 29 (02): : 331 - 334
  • [7] Nonlinear surface polaritons in 2D electron system in high magnetic field
    N.N. Beletskii
    Y.V. Bludov
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 29 : 331 - 334
  • [8] Surface Plasmon Polaritons in MoS2 Nanostructures
    Tao, Z. H.
    Huang, L. S.
    Dong, H. M.
    BRAZILIAN JOURNAL OF PHYSICS, 2018, 48 (06) : 604 - 607
  • [9] Electron spin transport driven by surface plasmon polaritons
    Oue, Daigo
    Matsuo, Mamoru
    PHYSICAL REVIEW B, 2020, 101 (16)
  • [10] Surface Plasmon Polaritons in MoS2 Nanostructures
    Z. H. Tao
    L. S. Huang
    H. M. Dong
    Brazilian Journal of Physics, 2018, 48 : 604 - 607