Sharp Sobolev Inequalities via Projection Averages

被引:10
|
作者
Kniefacz, Philipp [1 ]
Schuster, Franz E. [1 ]
机构
[1] Vienna Univ Technol, Vienna, Austria
基金
奥地利科学基金会;
关键词
Sobolev inequalities; Isoperimetric inequalities; Affine invariant inequalities; Convex bodies; MINKOWSKI-FIREY THEORY; POLYA-SZEGO PRINCIPLE; AFFINE;
D O I
10.1007/s12220-020-00544-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of sharp L-p Sobolev inequalities is established by averaging the length of i-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical L-p Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them-the affine L-p Sobolev inequality of Lutwak, Yang, and Zhang. When p = 1, the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.
引用
收藏
页码:7436 / 7454
页数:19
相关论文
共 50 条
  • [1] Sharp Sobolev Inequalities via Projection Averages
    Philipp Kniefacz
    Franz E. Schuster
    The Journal of Geometric Analysis, 2021, 31 : 7436 - 7454
  • [2] Sharp Sobolev inequalities in the presence of a twist
    Collion, Stephane
    Hebey, Emmanuel
    Vaugon, Michel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (06) : 2531 - 2537
  • [3] Sharp Sobolev inequalities of second order
    Emmanuel Hebey
    The Journal of Geometric Analysis, 2003, 13 (1): : 145 - 162
  • [4] Sharp Log-Sobolev inequalities
    Rothaus, OS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (10) : 2903 - 2904
  • [5] Sharp Hardy-Sobolev inequalities
    Filippas, S
    Maz'ya, VG
    Tertikas, A
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 483 - 486
  • [6] Sobolev improvements on sharp Rellich inequalities
    Barbatis, Gerassimos
    Tertikas, Achilles
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (02) : 641 - 663
  • [7] Sharp Sobolev inequalities in critical dimensions
    Ge, YX
    MICHIGAN MATHEMATICAL JOURNAL, 2003, 51 (01) : 27 - 45
  • [8] Sharp affine Lp Sobolev inequalities
    Lutwak, E
    Yang, D
    Zhang, GY
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2002, 62 (01) : 17 - 38
  • [9] Sharp Sobolev inequalities with interior norms
    Meijun Zhu
    Calculus of Variations and Partial Differential Equations, 1999, 8 : 27 - 43
  • [10] Sharp convex Lorentz–Sobolev inequalities
    Monika Ludwig
    Jie Xiao
    Gaoyong Zhang
    Mathematische Annalen, 2011, 350 : 169 - 197