Analysis of the Multi-Dimensional Navier-Stokes Equation by Caputo Fractional Operator

被引:13
|
作者
Albalawi, Kholoud Saad [1 ]
Mishra, Manvendra Narayan [2 ]
Goswami, Pranay [3 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia
[2] AMITY Univ Rajasthan, AMITY Sch Appl Sci, Dept Math, Jaipur 303002, India
[3] Dr R Ambedkar Univ Delhi, Sch Liberal Studies, Dept Math, Delhi 110006, India
关键词
Navier-Stokes equation; Caputo derivative; existence and uniqueness; Sumudu transform; MODEL;
D O I
10.3390/fractalfract6120743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the solution of the fractional multidimensional Navier-Stokes equation based on the Caputo fractional derivative operator. The behavior of the solution regarding the Navier-Stokes equation system using the Sumudu transform approach is discussed analytically and further discussed graphically.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Analysis of fractional multi-dimensional Navier-Stokes equation
    Chu, Yu-Ming
    Shah, Nehad Ali
    Agarwal, Praveen
    Chung, Jae Dong
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [2] Analysis of fractional multi-dimensional Navier–Stokes equation
    Yu-Ming Chu
    Nehad Ali Shah
    Praveen Agarwal
    Jae Dong Chung
    Advances in Difference Equations, 2021
  • [3] Numerical analysis of multi-dimensional Navier-Stokes equation based on Yang-Abdel-Cattani fractional operator
    Aychluh, Mulualem
    Ayalew, Minilik
    Suthar, D. L.
    Purohit, S. D.
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2024, 16 (SUPP01):
  • [4] The analytical investigation of time-fractional multi-dimensional Navier-Stokes equation
    Shah, Rasool
    Khan, Hassan
    Baleanu, Dumitru
    Kumam, Poom
    Arif, Muhammad
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 2941 - 2956
  • [5] The fractional view analysis of the Navier-Stokes equations within Caputo operator
    Khan H.
    Khan Q.
    Kumam P.
    Hajira
    Tchier F.
    Ahmed S.
    Singh G.
    Sitthithakerngkiet K.
    Chaos, Solitons and Fractals: X, 2022, 8
  • [6] Multi-dimensional Jordan chain and Navier-Stokes equation
    Konopelchenko, B. G.
    PHYSICS LETTERS A, 2022, 441
  • [7] FRDTM for numerical simulation of multi-dimensional, time-fractional model of Navier-Stokes equation
    Singh, Brajesh Kumar
    Kumar, Pramod
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 827 - 834
  • [8] Analysis and Numerical Computations of the Multi-Dimensional, Time-Fractional Model of Navier-Stokes Equation with a New Integral Transformation
    Chu, Yuming
    Rashid, Saima
    Kubra, Khadija Tul
    Inc, Mustafa
    Hammouch, Zakia
    Osman, M. S.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (03): : 3025 - 3060
  • [9] An analytical approach of multi-dimensional Navier-Stokes equation in the framework of natural transform
    Singh, Manoj
    Hussein, Ahmed
    Tamsir, Mohammad
    Ahmadini, Abdullah Ali H.
    AIMS MATHEMATICS, 2024, 9 (04): : 8776 - 8802
  • [10] The Numerical Investigation of a Fractional-Order Multi-Dimensional Model of Navier-Stokes Equation via Novel Techniques
    Mukhtar, Safyan
    Shah, Rasool
    Noor, Saima
    SYMMETRY-BASEL, 2022, 14 (06):