An Evaluation of Popular Hyperspectral Images Classification Approaches

被引:0
|
作者
Kuznetsov, Andrey [1 ]
Myasnikov, Vladislav [1 ]
机构
[1] Samara State Aerosp Univ, Samara, Russia
关键词
hyperspectral image; decision tree; C; 4.5; Bayes classifier; maximum-likelihood method; MSE; classification by conjugation; spectral angle; spectral mismatch; SVM;
D O I
10.1117/12.2228602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work is devoted to the problem of the best hyperspectral images classification algorithm selection. The following algorithms are used for comparison: decision tree using full cross-validation; decision tree C 4.5; Bayesian classifier; maximum-likelihood method; MSE minimization classifier, including a special case - classification by conjugation; spectral angle classifier (for empirical mean and nearest neighbor), spectral mismatch classifier and support vector machine (SVM). There are used AVIRIS and SpecTIR hyperspectral images to conduct experiments.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Performance Evaluation of Classical Classifiers and Deep Learning Approaches for Polymers Classification Based on Hyperspectral Images
    Lorenzo-Navarro, Javier
    Serranti, Silvia
    Bonifazi, Giuseppe
    Capobianco, Giuseppe
    ADVANCES IN COMPUTATIONAL INTELLIGENCE (IWANN 2021), PT II, 2021, 12862 : 281 - 292
  • [2] NEW APPROACHES ON DIMENSIONALITY REDUCTION IN HYPERSPECTRAL IMAGES FOR CLASSIFICATION PURPOSES
    Cerra, Daniele
    Bieniarz, Jakub
    Mueller, Rupert
    Reinartz, Peter
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1413 - 1416
  • [3] Hybridization of filter and wrapper approaches for the dimensionality reduction and classification of hyperspectral images
    Elmaizi, Asma
    Merzouqi, Maria
    Sarhrouni, Elkebir
    Hammouch, Ahmed
    Nacir, Chafik
    2017 3RD INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2017, : 465 - 469
  • [4] Classification of objects of natural hyperspectral images
    Khotilin, Maksimilian
    Kravtsova, Natalia
    Rytsarev, Igor
    Kupriyanov, Alexander
    2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [5] Hyperspectral images classification based on KLT
    Quintiliano P.
    Santa-Rosa A.
    Guadagnin R.
    Pattern Recognition and Image Analysis, 2006, 16 (1) : 39 - 42
  • [6] Effects of Compression on the Classification of Hyperspectral Images
    Choi, Euisun
    Lee, Sangwook
    Lee, Chulhee
    NEW ASPECTS OF SYSTEMS, PTS I AND II, 2008, : 541 - +
  • [7] MAHALANOBIS KERNEL FOR THE CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Fauvel, M.
    Villa, A.
    Chanussot, J.
    Benediktsson, J. A.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3724 - 3727
  • [8] Multidomain Subspace Classification for Hyperspectral Images
    Zhang, Liangpei
    Zhu, Xiaojie
    Zhang, Lefei
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6138 - 6150
  • [9] Compression and classification methods for hyperspectral images
    Kaarna A.
    Toivanen P.
    Keränen P.
    Pattern Recognition and Image Analysis, 2006, 16 (3) : 413 - 424
  • [10] Scattering transforms and classification of hyperspectral images
    Czaja, Wojciech
    Kavalerov, Ilya
    Li, Weilin
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIV, 2018, 10644