On-line reactor monitoring with neural network for RSG-GAS

被引:0
|
作者
Nabeshima, Kunihiko [1 ]
Kurniant, Kristedjo [1 ]
Surbakti, Tukiran [1 ]
Pinem, Surian [1 ]
Subekti, Muhammad [1 ]
Minakuchi, Yusuke [1 ]
Kudo, Kazuhiko [1 ]
机构
[1] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ANNOMA (Artificial Neural Network of Monitoring Aids) system is applied to the condition monitoring and signal validation of Multi Purpose Reactor (RSG-GAS) in Indonesia. The feedforward neural network in auto-associative mode learns reactor's normal operational data, and models the reactor dynamics during the initial learning. The basic principle of the anomaly detection is to monitor the deviation between the process signals measured from the actual reactor and the corresponding values predicted by the reactor model, i.e., the neural networks. The pattern of the deviation at each signal is utilized for the identification of anomaly, e.g. sensor failure or system fault. The on-line test results showed that the neural network successfully monitored the reactor status during power increasing and steady state operation in real-time.
引用
收藏
页码:305 / 308
页数:4
相关论文
共 50 条
  • [1] A Bayesian Network Approach to Estimating Software Reliability of RSG-GAS Reactor Protection System
    Santoso, S.
    Bakhri, S.
    Situmorang, J.
    ATOM INDONESIA, 2019, 45 (01) : 43 - 49
  • [2] Operator Support System Design forthe Operation of RSG-GAS Research Reactor
    Santoso, S.
    Situmorang, J.
    Bakhri, S.
    Subekti, M.
    Sunaryo, G. R.
    INTERNATIONAL CONFERENCE ON NUCLEAR ENERGY TECHNOLOGIES AND SCIENCES (ICONETS 2017), 2018, 962
  • [3] CFD simulation on sub-channel blockage in the fuel plate of RSG-GAS reactor
    Dibyo, Sukmanto
    Pinem, Surian
    Sulistyo, Farisy Yogatama
    Sriwardhani, Veronica Indriati
    PROGRESS IN NUCLEAR ENERGY, 2024, 170
  • [4] A neural network for on-line tool monitoring
    Wang, YP
    Hung, SCC
    Shieh, CM
    Suen, DS
    CONDITION MONITORING '97, 1997, : 347 - 353
  • [5] Benchmarking RSG-GAS reactor thermal hydraulic data using RELAP5 code
    Abdelrazek, I. D.
    Aly, M. Naguib
    Badawi, A. A.
    Elnour, A. G. Abo
    ANNALS OF NUCLEAR ENERGY, 2014, 70 : 36 - 43
  • [6] Modelling the radiolysis of RSG-GAS primary cooling water
    Butarbutar, S. L.
    Kusumastuti, R.
    Subekti, M.
    Sunaryo, G. R.
    INTERNATIONAL CONFERENCE ON NUCLEAR ENERGY TECHNOLOGIES AND SCIENCES (ICONETS 2017), 2018, 962
  • [7] Analysis of JKT01 Neutron Flux Detector Measurements In RSG-GAS Reactor Using LabVIEW
    Rokhmadi
    Rachman, Agus Nur
    Sujarwono
    Taryo, Taswanda
    Sunaryo, Geni Rina
    INTERNATIONAL CONFERENCE ON NUCLEAR ENERGY TECHNOLOGIES AND SCIENCES (ICONETS 2017), 2018, 962
  • [8] Thermal-Hydraulic Benchmarking of RSG-GAS Research Reactor Using RELAP5
    Hastuti, Endiah Puji
    Ekariansyah, Andy Sofrani
    Sudarmono
    Sujarwono
    Wetchagarun, Saensuk
    3RD INTERNATIONAL CONFERENCE ON NUCLEAR ENERGY TECHNOLOGIES AND SCIENCES (ICONETS) 2019, 2019, 2180
  • [9] Gas Thickness On-line Monitoring Instrument Design Based on BP Neural Network
    Liu Weiwei
    Mu Ping'an
    Dai Shuguang
    Wang Shijun
    Proceedings of the 27th Chinese Control Conference, Vol 6, 2008, : 713 - 716
  • [10] Neutronic and Thermal-Hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor
    Pinem, S.
    Sembiring, T. M.
    Liem, P. H.
    ATOM INDONESIA, 2016, 42 (03) : 123 - 128