Dependence and interdependence analysis for interval-valued variables

被引:2
|
作者
Lauro, Carlo [1 ]
Gioia, Federica [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Stat, Complesso Univ Monte S Angelo,Via Cinthia, I-80126 Naples, Italy
关键词
interval-valued variable; interval algebra; visualization;
D O I
10.1007/3-540-34416-0_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data analysis is often affected by different types of errors as: measurement errors, computation errors, imprecision related to the method adopted for estimating the data. The methods which have been proposed for treating errors in the data, may also be applied to different kinds of data that in real life are of interval type. The uncertainty in the data, which is strictly connected to the above errors, may be treated by considering, rather than a single value for each data, the interval of values in which it may fall: the interval data. The purpose of the present paper is to introduce methods for analyzing the interdependence and dependence among interval-valued variables. Statistical units described by interval-valued variables can be assumed as a special case of Symbolic Object (SO). In Symbolic Data Analysis (SDA), these data are represented as boxes. Accordingly, the purpose of the present work is the extension of the Principal Component Analysis to obtain a visualization of such boxes, on a lower dimensional space. Furthermore, a new method for fitting an interval simple linear regression equation is developed. With difference to other approaches proposed in the literature that work on scalar recoding of the intervals using classical tools of analysis, we make extensively use of the interval algebra tools combined with some optimization techniques. keywords: interval-valued variable, interval algebra, visualization.
引用
收藏
页码:171 / +
页数:3
相关论文
共 50 条
  • [1] Interval-valued linguistic variables
    Alcalde, C.
    Burusco, A.
    Fuentes-Gonzalez, R.
    COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 217 - 222
  • [2] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [3] Regression Models for Symbolic Interval-Valued Variables
    Chacon, Jose Emmanuel
    Rodriguez, Oldemar
    ENTROPY, 2021, 23 (04)
  • [4] Regression analysis of belief functions on interval-valued variables: comparative studies
    Zhi-gang Su
    Pei-hong Wang
    Soft Computing, 2014, 18 : 51 - 70
  • [5] Regression analysis of belief functions on interval-valued variables: comparative studies
    Su, Zhi-gang
    Wang, Pei-hong
    SOFT COMPUTING, 2014, 18 (01) : 51 - 70
  • [6] Bivariate symbolic regression models for interval-valued variables
    Lima Neto, Eufrasio de A.
    Cordeiro, Gauss M.
    de Carvalho, Francisco de A. T.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1727 - 1744
  • [7] Bivariate Generalized Linear Model for Interval-Valued Variables
    Lima Neto, Eufrasio de A.
    Cordeiro, Gauss M.
    de Carvalho, Francisco A. T.
    dos Anjos, Ulisses U.
    da Costa, Abner G.
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 919 - +
  • [8] Interval-valued probability modeling of Internet traffic variables
    Fierens, PI
    Fine, TL
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 80 - 80
  • [9] CONSTRUCTION OF REGRESSION TREES ON INTERVAL-VALUED SYMBOLIC VARIABLES
    Shimokawa, Asanao
    Kawasaki, Yohei
    Miyaoka, Etsuo
    JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2014, 27 (01): : 61 - 79
  • [10] Constructing likelihood functions for interval-valued random variables
    Zhang, X.
    Beranger, B.
    Sisson, S. A.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (01) : 1 - 35