Techno-economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle

被引:91
|
作者
Roy, Dibyendu [1 ]
Samanta, Samiran [2 ]
Ghosh, Sudip [1 ]
机构
[1] Indian Inst Engn Sci & Technol, Dept Mech Engn, Howrah 711103, W Bengal, India
[2] Deemed Univ, Kalinga Inst Ind Technol, Sch Mech Engn, Bhubaneswar 24, Orissa, India
关键词
Biomass gasification; Solid oxide fuel cell; Gas turbine; Organic Rankine cycle; Exergy; Economic analysis; SOFC-GT; MULTIOBJECTIVE OPTIMIZATION; THERMODYNAMIC ANALYSIS; PERFORMANCE ANALYSIS; POWER-PLANT; NATURAL-GAS; HYDROGEN-PRODUCTION; ECONOMIC-ANALYSIS; EXERGY ANALYSIS; WASTE HEAT;
D O I
10.1016/j.jclepro.2019.03.261
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a techno-economic and environmental assessment of a biomass gasification based power plant integrating a solid oxide fuel cell module, an externally fired gas turbine and an organic Rankine cycle. The proposed biomass based system is nonparallel with the conventional biomass based power generation system because of biomass gasification, solid oxide fuel cell, externally fired gas turbine, organic Rankine cycle have been combined in a single system. The thermodynamic and economic performances of the plant have been investigated under the varying operating and design parameters. The maximum energetic and exergetic efficiencies of the system are computed to be 49.47% and 44.2%, respectively. Exergy analysis predicts that the biomass gasifier unit contributes highest amount of exergy destruction (38.91%) in terms of total exergy destruction of the system, followed by solid oxide fuel cell (21.24%) and secondary heat exchanger (13.11%). Economic analysis forecasts that the minimum levelized unit cost of electricity would be 0.086 $/kWh. A performance comparison with other conventional biomass based power generation systems shows that the proposed system exhibits better efficiency and cost of electricity than others. Environmental analysis predicts that the maximum CO2 emission reduction potential is computed to be 3564 t CO2/year compared to the fossil fuel based power plant. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:36 / 57
页数:22
相关论文
共 50 条
  • [1] Techno-Economic and Environmental Analysis of a Hybrid Power System Formed From Solid Oxide Fuel Cell, Gas Turbine, and Organic Rankine Cycle
    Yadav, Anil Kumar
    Kumar, Anil
    Sinha, Shailendra
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (07):
  • [2] Cycle configuration analysis and techno-economic sensitivity of biomass externally fired gas turbine with bottoming ORC
    Camporeale, Sergio M.
    Pantaleo, Antonio M.
    Ciliberti, Patrizia D.
    Fortunato, Bernardo
    ENERGY CONVERSION AND MANAGEMENT, 2015, 105 : 1239 - 1250
  • [3] Tri-generation biomass system based on externally fired gas turbine, organic rankine cycle and absorption chiller
    Abd El-Sattar, Hoda
    Kamel, Salah
    Vera, David
    Jurado, Francisco
    JOURNAL OF CLEANER PRODUCTION, 2020, 260
  • [4] Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle
    Dibyendu Roy
    Sudip Ghosh
    Clean Technologies and Environmental Policy, 2017, 19 : 1693 - 1709
  • [5] Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle
    Roy, Dibyendu
    Ghosh, Sudip
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2017, 19 (06) : 1693 - 1709
  • [6] Thermo-economic assessment of an externally fired hybrid CSP/biomass gas turbine and organic Rankine combined cycle
    Pantaleo, Antonio M.
    Camporeale, Sergio M.
    Miliozzi, Adio
    Russo, Valeria
    Mugnozza, Giacomo Scarascia
    Markides, Christos N.
    Shah, Nilay
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 174 - 181
  • [7] Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic Rankine cycle
    Karimi, Mohammad Hossein
    Chitgar, Nazanin
    Emadi, Mohammad Ali
    Ahmadi, Pouria
    Rosen, Marc A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (11) : 6262 - 6277
  • [8] A techno-economic assessment of biomass fuelled trigeneration system integrated with organic Rankine cycle
    Huang, Y.
    Wang, Y. D.
    Rezvani, S.
    McIlveen-Wright, D. R.
    Anderson, M.
    Mondol, J.
    Zacharopolous, A.
    Hewitt, N. J.
    APPLIED THERMAL ENGINEERING, 2013, 53 (02) : 325 - 331
  • [9] Thermo-economic and environmental performance analyses of a biomass-based carbon negative system integrating externally fired gas turbine and molten carbonate fuel cell
    Zaman, Sk Arafat
    Ghosh, Sudip
    ENERGY CONVERSION AND MANAGEMENT-X, 2022, 14
  • [10] Techno-economic feasibility assessment of a biomass cogeneration plant based on an Organic Rankine Cycle
    Uris, Maria
    Ignacio Linares, Jose
    Arenas, Eva
    RENEWABLE ENERGY, 2014, 66 : 707 - 713