Convergence to strong nonlinear diffusion waves for solutions to p-system with damping

被引:7
|
作者
Said-Houari, Belkacem [1 ]
机构
[1] Univ Toulouse 3, MIP, Inst Math Toulouse, F-31062 Toulouse 09, France
关键词
Linear damping; Boundary effect; Nonlinear diffusion waves; Convergence rates; Fourier transform; HYPERBOLIC CONSERVATION-LAWS; ASYMPTOTIC-BEHAVIOR; EQUATIONS; RATES;
D O I
10.1016/j.jde.2009.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the so-called p-system with linear damping, and we will prove an optimal decay estimates without any smallness conditions on the initial error. More precisely, if we restrict the initial data (V-0, U-0) in the space H-3(R+) boolean AND L-1,L-gamma (R+) x H-2(R+) boolean AND L-1,L-gamma (R+), then we can derive faster decay estimates than those given in [P. Marcati, M. Mei, B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech. 7 (2) (2005) 224-240: H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of p-system with damping, J. Differential Equations 174 (1) (2001) 200-236] and [M. jian, C. Zhu, Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant, J. Differential Equations 246 (1) (2009) 50-77]. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:917 / 930
页数:14
相关论文
共 50 条