Experimental Investigation in Optimizing the Hydrogen Fuel on a Hydrogen Diesel Dual-Fuel Engine

被引:27
|
作者
Saravanan, N. [1 ]
Nagarajan, G. [2 ]
机构
[1] Tata Motors Ltd, Pune 411019, Maharashtra, India
[2] Anna Univ, Dept Mech Engn, Internal Combust Engn Div, Madras 600025, Tamil Nadu, India
关键词
COMBUSTION CHARACTERISTICS; NATURAL-GAS;
D O I
10.1021/ef800962k
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
During the past decade the use of alternative fuels for diesel engine has received considerable attention. The interdependence and uncertainty of petroleum-based fuel availability and environmental issues, most notably air pollution, are among the principal forces behind the movement toward alternative sources of energy. Several alternative fuels are available, but all of them are hydrocarbon-based fuels, which cannot eliminate the net carbon emissions. One alternative is to make use of a non-carbon fuel like hydrogen. In the present investigation, hydrogen was used in a diesel engine in the dual-fuel mode with diesel as a primary fuel. Experiments were conducted to determine the optimized injection timing, injection duration, and hydrogen flow rate. From the results it is observed that the optimum timing in port injection is 5 degrees before gas exchange top dead center (BGTDC) with an injection duration of 30 degrees crank angle (CA) and in manifold injection at gas exchange top dead center (GTDC) with an injection duration of 30 degrees CA. Hydrogen flow rate was varied from 2 to 9.5 lpm with above the above-optimized conditions for both port and manifold injection. The optimized hydrogen flow rate was found to be 7.5 lpm for both port and manifold injection. Flow rates higher than 9.5 lpm shows an improvement in performance and reduction in emissions, but the onset of knock was observed; hence, the flow rate was limited to 9.5 lpm. At 75% load the brake thermal efficiency increases by 21% in port injection and 18% in manifold injection. NOx emission is reduced by 2% in port injection and 4% in manifold injection compared to diesel at full load. At full load, smoke is reduced by 45% in both port injection and manifold injection. In the entire load spectra a reduction in CO by about 50% is noticed in both port and manifold injection. Ignition delay or a delay period is found to be 11 degrees or 1.22 ms for diesel and 10 degrees or 1.11 ms in both port and manifold injection.
引用
收藏
页码:2646 / 2657
页数:12
相关论文
共 50 条
  • [1] Experimental study on combustion characteristics of diesel–hydrogen dual-fuel engine
    Zhaoju Qin
    Zhenzhong Yang
    Chuanfa Jia
    Junfa Duan
    Lijun Wang
    Journal of Thermal Analysis and Calorimetry, 2020, 142 : 1483 - 1491
  • [2] The Impact of Water Injection and Hydrogen Fuel on Performance and Emissions in a Hydrogen/Diesel Dual-Fuel Engine
    Sharkey, Ashley
    Zare, Ali
    ENERGIES, 2024, 17 (23)
  • [3] Experimental study on combustion characteristics of diesel-hydrogen dual-fuel engine
    Qin, Zhaoju
    Yang, Zhenzhong
    Jia, Chuanfa
    Duan, Junfa
    Wang, Lijun
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 142 (04) : 1483 - 1491
  • [4] WATER INDUCTION STUDIES IN A HYDROGEN DIESEL DUAL-FUEL ENGINE
    PRABHUKUMAR, GP
    SWAMINATHAN, S
    NAGALINGAM, B
    GOPALAKRISHNAN, KV
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1987, 12 (03) : 177 - 186
  • [5] Computational Investigation of Combustion, Performance, and Emissions of a Diesel-Hydrogen Dual-Fuel Engine
    Zhang, Bo
    Wang, Huaiyu
    Wang, Shuofeng
    SUSTAINABILITY, 2023, 15 (04)
  • [6] Numerical investigation on hydrogen-diesel dual-fuel engine improvements by oxygen enrichment
    Karimi, Masoud
    Wang, Xiaolin
    Hamilton, James
    Negnevitsky, Michael
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (60) : 25418 - 25432
  • [7] Hydrogen-diesel dual-fuel engine optimization for CHP systems
    Dimitriou, Pavlos
    Tsujimura, Taku
    Suzuki, Yasumasa
    ENERGY, 2018, 160 : 740 - 752
  • [8] An experimental investigation on DI diesel engine with hydrogen fuel
    Saravanan, N.
    Nagarajan, G.
    Narayanasamy, S.
    RENEWABLE ENERGY, 2008, 33 (03) : 415 - 421
  • [9] Thermodynamic Modeling of a Turbocharged Diesel–Hydrogen Dual-Fuel Marine Engine
    Selmane F.
    Djermouni M.
    Ouadha A.
    Journal of The Institution of Engineers (India): Series C, 2021, 102 (01) : 221 - 234
  • [10] Combustion and emission characteristics of a hydrogen-diesel dual-fuel engine
    Dimitriou, Povlos
    Kumar, Madan
    Tsujimura, Taku
    Suzuki, Yasumasa
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (29) : 13605 - 13617