Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries

被引:60
|
作者
Li, Nuo [1 ]
Cao, Weiyi [1 ]
Liu, Yawen [1 ]
Ye, Hongqi [1 ]
Han, Kai [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; CNTs; 3D framework; Lithium-sulfur battery; Separator; ION BATTERIES; POROUS GRAPHENE; PERFORMANCE; CATHODE; COMPOSITE; INTERLAYER; NANOCOMPOSITES; NANOSHEETS; GROWTH;
D O I
10.1016/j.colsurfa.2019.04.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The shuttling of polysulfide is still a major issue which greatly hinders the practical application of lithium-sulfur (Li-S) batteries. Here, we report a multifunctional separator for trapping polysulfide and reusing the active sulfur species in Li-S batteries. The multifunctional separator was fabricated by coating the commercial polypropylene (PP) separator with a three-dimensional (3D) interwoven framework structure composed of 1D carbon nanotubes (CNTs) and 2D Ti3C2Tx MXene nanosheets. Taking advantages of the excellent electrical conductivity and strong chemical interaction with polysulfide of Ti3C2Tx MXene, the ability in immobilizing and reusing of polysulfide for the multifunctional separator was significantly enhanced compared with pure CNTs modified separator. At mean time, the presence of CNTs effectively helps avoid the restacking of MXene nanosheets, resulting in an interfacial layer between separator and cathode with an interconnected conductive network, which can facilitate fast Li ion and electron transport and thus improve the rate capabilities and sulfur utilization. Moreover, the effect of MXene content on the structure and electrochemical performance were systematically investigated. At MXene content of 5% and CNTs/MXene mass loading of 0.16 mg cm(-2), the cell with CNTs/MXene-PP (CMP) separator delivered an initial capacity of 1415 mA h g(-1) at 0.1 C, a capacity retention of 614 mA h g(-1) after 600 cycles at 1 C with a low capacity decay of 0.06% per cycle in the 0.8-2.5 mg cm(-2) sulfurloaded cathode. Such 3D carbon nanotubes/MXene conductive framework provides great potential for developing efficient functional separator for high-performance Li-S batteries and can be easily applied in electrode materials for other electrochemical energy storage systems.
引用
收藏
页码:128 / 136
页数:9
相关论文
共 50 条
  • [1] Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries
    Lei, Tianyu
    Chen, Wei
    Lv, Weiqiang
    Huang, Jianwen
    Zhu, Jian
    Chu, Junwei
    Yan, Chaoyi
    Wu, Chunyang
    Yan, Yichao
    He, Weidong
    Xiong, Jie
    Li, Yanrong
    Yan, Chenglin
    Goodenough, John B.
    Duan, Xiangfeng
    JOULE, 2018, 2 (10) : 2091 - 2104
  • [2] Lock of sulfur with carbon black and a three-dimensional graphene@carbon nanotubes coated separator for lithium-sulfur batteries
    Wu, Haiwei
    Huang, Ying
    Zhang, Weichao
    Sun, Xu
    Yang, Yiwen
    Wang, Lei
    Zong, Meng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 708 : 743 - 750
  • [3] TiO2@Porous carbon nanotubes modified separator as polysulfide barrier for lithium-sulfur batteries
    Gao, Zhengyuan
    Xue, Zhiyang
    Miao, Yingchun
    Chen, Bin
    Xu, Jinshan
    Shi, Hongqi
    Tang, Tao
    Zhao, Xiangyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906
  • [4] Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries
    Hu, Wen
    Hirota, Yuichiro
    Zhu, Yexin
    Yoshida, Nao
    Miyamoto, Manabu
    Zheng, Tao
    Nishiyama, Norikazu
    CHEMSUSCHEM, 2017, 10 (18) : 3557 - 3564
  • [5] Suppressing Polysulfide Shuttling in Lithium-Sulfur Batteries via a Multifunctional Conductive Binder
    Chen, Shiming
    Song, Zhibo
    Ji, Yuchen
    Yang, Kai
    Fang, Jianjun
    Wang, Lu
    Wang, Zijian
    Zhao, Yan
    Zhao, Yunlong
    Yang, Luyi
    Pan, Feng
    SMALL METHODS, 2021, 5 (10)
  • [6] A highly efficient polysulfide mediator for lithium-sulfur batteries
    Liang, Xiao
    Hart, Connor
    Pang, Quan
    Garsuch, Arnd
    Weiss, Thomas
    Nazar, Linda F.
    NATURE COMMUNICATIONS, 2015, 6
  • [7] Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries
    Zheng, Bangbei
    Yu, Liwei
    Zhao, Yang
    Xi, Jingyu
    ELECTROCHIMICA ACTA, 2019, 295 : 910 - 917
  • [8] Inhibiting polysulfide shuttling with a flexible "skin" for highly stable Lithium-Sulfur batteries
    Dong, Yu
    Zhang, Dan
    Huang, Li
    Luo, Yixin
    Liu, Jiaxiang
    Liu, Sisi
    Zhang, Wanqi
    He, Yongqian
    Yu, Ruizhi
    Shu, Hongbo
    Wang, Xianyou
    Chen, Manfang
    MATERIALS LETTERS, 2023, 343
  • [9] A Hierarchical Three-Dimensional Porous Laser-Scribed Graphene Film for Suppressing Polysulfide Shuttling in Lithium-Sulfur Batteries
    Alhajji, Eman
    Wang, Wenxi
    Zhang, Wenli
    Alshareef, Husam N.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) : 18833 - 18839
  • [10] CoS2@SC modified separator for high-performance lithium-sulfur batteries: suppression of polysulfide shuttling
    Cao, Yongan
    You, Jiyuan
    Liu, Xuefei
    Hao, Xiaoqian
    Wu, Qiao
    Zhang, Bo
    Xu, Zhiming
    Deng, Liwei
    Wang, Wenju
    Li, Yuqian
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 11399 - 11409