Interleaved Training for Intelligent Surface-Assisted Wireless Communications

被引:5
|
作者
Zhang, Cheng [1 ,2 ]
Jing, Yindi [3 ]
Huang, Yongming [1 ,2 ]
You, Xiaohu [1 ,2 ]
机构
[1] Southeast Univ, Nanjing 210096, Peoples R China
[2] Purple Mt Labs, Nanjing 210096, Peoples R China
[3] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
关键词
Training; Signal to noise ratio; Channel estimation; Wireless communication; Fading channels; Quantization (signal); Upper bound; Intelligent surface; channel state information; interleaved training; training overhead; feedback overhead; MASSIVE MIMO DOWNLINK; REFLECTING SURFACE; CHANNEL ESTIMATION; PERFORMANCE ANALYSIS; DESIGN;
D O I
10.1109/LSP.2020.3027187
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, for outage performance orientated large intelligent surfaces (LISs)-assisted point to point wireless systems with severely blocked direct link and Rayleigh fading channels,we first propose a jointly interleaved training and transmission design. Then a semi-closed form expression is derived for the average training overhead. And it is shown to be upper bounded by the minimum between the LIS size and a value explicitly dependent on the target receiver signal-to-noise-ratio (SNR). The upper bound gives the condition on the target SNR for achieving overhead saving compared to the full CSI scheme. And the overhead saving increases linearlywith the LIS size for constant target SNR. Non-negligible overhead saving is still available even though one increases the target SNR with larger LIS, e.g., as the square of the LIS size for fully exploiting the beamforming gain. Finally, we indicate the impact of practical phase quantization on the training and feedback overhead. Simulations verify these results and show that the proposed scheme can significantly reduce the training overhead without performance loss compared to the full CSI scheme.
引用
收藏
页码:1774 / 1778
页数:5
相关论文
共 50 条
  • [1] Adaptive Transmission for Reconfigurable Intelligent Surface-Assisted OFDM Wireless Communications
    Lin, Shaoe
    Zheng, Beixiong
    Alexandropoulos, George C.
    Wen, Miaowen
    Chen, Fangjiong
    Mumtaz, Shahid
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (11) : 2653 - 2665
  • [2] Hybrid Relay-Reflecting Intelligent Surface-Assisted Wireless Communications
    Nguyen, Nhan Thanh
    Vu, Quang-Doanh
    Lee, Kyungchun
    Juntti, Markku
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (06) : 6228 - 6244
  • [3] Channel Estimation for Reconfigurable Intelligent Surface-Assisted Wireless Communications Considering Doppler Effect
    Sun, Shu
    Yan, Hangsong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (04) : 790 - 794
  • [4] Aerial Reconfigurable Intelligent Surface-Assisted Terrestrial Communications
    Gu X.
    Duan W.
    Zhang G.
    Wen M.
    Choi J.
    Ho P.-H.
    IEEE Internet of Things Magazine, 2024, 7 (02): : 54 - 60
  • [5] Perfomance analysis of Intelligent Reflecting Surface-assisted Wireless Communications Under Various Application Scenarios
    Stephen, Anjaly S. L.
    Rajan, Upama M. N.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [6] On the Outage Performance of Reconfigurable Intelligent Surface-Assisted UAV Communications
    Abualhayja'a, Mohammad
    Centeno, Anthony
    Mohjazi, Lina
    Abbasi, Qammer H.
    Imran, Muhammad Ali
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [7] Intelligent Reflecting Surface-Assisted Wireless Powered Heterogeneous Networks
    Zhu, Zhengyu
    Li, Zheng
    Chu, Zheng
    Wu, Qingqing
    Liang, Jing
    Xiao, Yunlu
    Liu, Peijia
    Lee, Inkyu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9881 - 9892
  • [8] Intelligent Reflecting Surface-Assisted Passive Covert Wireless Detection
    Chen, Zhilin
    Yan, Shihao
    Zhou, Xiaobo
    Shu, Feng
    Ng, Derrick Wing Kwan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (02) : 2954 - 2959
  • [9] Opportunistic Reflection in Reconfigurable Intelligent Surface-Assisted Wireless Networks
    Jiang, Wei
    Schotten, Hans D.
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [10] Intelligent Reflecting Surface-Assisted Free Space Optical Quantum Communications
    Kundu, Neel Kanth
    Mckay, Matthew R.
    Murch, Ross
    Mallik, Ranjan K.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 5079 - 5093