Interfacing quantum emitters with propagating surface acoustic waves

被引:38
|
作者
Weiss, Matthias [1 ,2 ,3 ]
Krenner, Hubert J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Augsburg, Lehrstuhl Expt Phys 1, Univ Str 1, D-86159 Augsburg, Germany
[2] Univ Augsburg, ACIT, Univ Str 1, D-86159 Augsburg, Germany
[3] NIM, Schellingstr 4, D-80339 Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Ctr Nanosci CeNS, Geschwister Scholl Pl 1, D-80539 Munich, Germany
关键词
surface acoustic waves; quantum dots; optomechanics; phononics; elastic waves; SINGLE-ELECTRON TRANSPORT; SPONTANEOUS EMISSION; ENERGY RELAXATION; OPTICAL SPECTROSCOPY; PHONON BOTTLENECK; PHOTON SOURCE; LIFT-OFF; DOT; GAAS; LIGHT;
D O I
10.1088/1361-6463/aace3c
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this topical review, we report on recent advances on the coupling of single semiconductor quantum emitters, quantum dots, to the dynamic strain and electric fields of surface acoustic waves. Quantum dots are atom-like optically addressable two-level systems embedded in semiconductor matrices. On the one hand, the occupancy states of these 'artificial atoms' can be programmed by spatio-temporal carrier dynamics driven by sound waves. On the other hand, the quantized energy levels of electrons and holes couple strongly to the mechanical strain of these waves. We present an overview of the fundamental coupling mechanisms, experimental techniques to probe these systems in the time domain, and recent hallmark experiments. We discuss emerging research themes including hybrid architectures comprising advanced LiNbO3 SAW devices and single quantum dot devices of nanowire-based quantum emitters, and sound-driven control of light-matter interaction between single photons in nanophotonic resonators and two-level quantum dot systems.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] In Situ Probing of Surface Acoustic Waves by Interfacing with Lanthanide Emitters
    Zhao, Yanan
    Yuan, Yang
    Chen, Haisheng
    Chen, Wenwen
    Du, Xiaona
    Gong, Cheng
    Lin, Lie
    Luo, Wei
    Liu, Weiwei
    Zhang, Yang
    ADVANCED OPTICAL MATERIALS, 2021, 9 (03)
  • [2] Subwavelength confinement of propagating surface acoustic waves
    Ash, B. J.
    Rezk, A. R.
    Yeo, L. Y.
    Nash, G. R.
    APPLIED PHYSICS LETTERS, 2021, 118 (01)
  • [3] Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons
    Gonzalez-Tudela, A.
    Huidobro, P. A.
    Martin-Moreno, L.
    Tejedor, C.
    Garcia-Vidal, F. J.
    PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [4] Transporting Powder with Surface Acoustic Waves Propagating on Tilted Substrate
    Saiki, Tsunemasa
    Takizawa, Yukako
    Kaneyoshi, Takahiro
    Iimura, Kenji
    Suzuki, Michitaka
    Yamaguchi, Akinobu
    Utsumi, Yuichi
    SENSORS AND MATERIALS, 2021, 33 (12) : 4409 - 4426
  • [5] Obliquely propagating dust-acoustic waves in dense quantum magnetoplasmas
    Khan, S. A.
    Masood, W.
    Siddiq, M.
    PHYSICS OF PLASMAS, 2009, 16 (01)
  • [6] Towards phonon routing: controlling propagating acoustic waves in the quantum regime
    Ekstrom, M. K.
    Aref, T.
    Ask, A.
    Andersson, G.
    Suri, B.
    Sanada, H.
    Johansson, G.
    Delsing, P.
    NEW JOURNAL OF PHYSICS, 2019, 21 (12):
  • [7] Control of single photon emitters in semiconductor nanowires by surface acoustic waves
    Lazic, S.
    Hernandez-Minguez, A.
    Santos, P. V.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2017, 32 (08)
  • [8] Rotation-perturbed surface acoustic waves propagating in piezoelectric crystals
    Fang, HY
    Yang, JS
    Jiang, Q
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (36) : 4933 - 4947
  • [9] Circuit quantum acoustodynamics with surface acoustic waves
    Manenti, Riccardo
    Kockum, Anton F.
    Patterson, Andrew
    Behrle, Tanja
    Rahamim, Joseph
    Tancredi, Giovanna
    Nori, Franco
    Leek, Peter J.
    NATURE COMMUNICATIONS, 2017, 8
  • [10] Attenuation of surface acoustic waves by quantum dots
    Knabchen, A
    Levinson, YB
    Entin-Wohlman, O
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1195 - 1202