Layered convolutional dictionary learning for sparse coding itemsets

被引:1
|
作者
Mansha, Sameen [1 ]
Hoang Thanh Lam [2 ]
Yin, Hongzhi [1 ]
Kamiran, Faisal [3 ]
Ali, Mohsen [3 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld, Australia
[2] IBM Res, Dublin, Ireland
[3] Informat Technol Univ Punjab, Lahore, Pakistan
关键词
Interesting itemset mining; Convolutional sparse dictionary learning; Lossless compression; Deep learning; PATTERNS;
D O I
10.1007/s11280-018-0565-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dictionary learning for sparse coding has been successfully used in different domains, however, has never been employed for the interesting itemset mining. In this paper, we formulate an optimization problem for extracting a sparse representation of itemsets and show that the discrete nature of itemsets makes it NP-hard. An efficient approximation algorithm is presented which greedily solves maximum set cover to reduce overall compression loss. Furthermore, we incorporate our sparse representation algorithm into a layered convolutional model to learn nonredundant dictionary items. Following the intuition of deep learning, our convolutional dictionary learning approach convolves learned dictionary items and discovers statistically dependent patterns using chi-square in a hierarchical fashion; each layer having more abstract and compressed dictionary than the previous. An extensive empirical validation is performed on thirteen datasets, showing better interpretability and semantic coherence of our approach than two existing state-of-the-art methods.
引用
收藏
页码:2225 / 2239
页数:15
相关论文
共 50 条
  • [1] Layered convolutional dictionary learning for sparse coding itemsets
    Sameen Mansha
    Hoang Thanh Lam
    Hongzhi Yin
    Faisal Kamiran
    Mohsen Ali
    World Wide Web, 2019, 22 : 2225 - 2239
  • [2] SEPARABLE DICTIONARY LEARNING FOR CONVOLUTIONAL SPARSE CODING VIA SPLIT UPDATES
    Quesada, Jorge
    Rodriguez, Paul
    Wohlberg, Brendt
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4094 - 4098
  • [3] Submodular Dictionary Learning for Sparse Coding
    Jiang, Zhuolin
    Zhang, Guangxiao
    Davis, Larry S.
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3418 - 3425
  • [4] Sparse representation by dictionary combined convolutional sparse coding and K-SVD
    Lian, Qiu-Sheng
    Han, Dong-Mei
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2012, 34 (07): : 1493 - 1498
  • [5] Online Convolutional Sparse Coding with Sample-Dependent Dictionary
    Wang, Yaqing
    Yao, Quanming
    Kwok, James T.
    Ni, Lionel M.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [6] DICTIONARY LEARNING AND SPARSE CODING FOR UNSUPERVISED CLUSTERING
    Sprechmann, Pablo
    Sapiro, Guillermo
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2042 - 2045
  • [7] Confident Kernel Sparse Coding and Dictionary Learning
    Hosseini, K.
    Hammer, Barbara
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1031 - 1036
  • [8] PERFORMANCE LIMITS OF DICTIONARY LEARNING FOR SPARSE CODING
    Jung, Alexander
    Eldar, Yonina C.
    Goertz, Norbert
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 765 - 769
  • [9] An MDL Framework for Sparse Coding and Dictionary Learning
    Ramirez, Ignacio
    Sapiro, Guillermo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2913 - 2927
  • [10] Adaptive ADMM for Dictionary Learning in Convolutional Sparse Representation
    Peng, Guan-Ju
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (07) : 3408 - 3422