The symmetric structure of the plus/minus Selmer groups of elliptic curves over totally real fields and the parity conjecture

被引:4
|
作者
Du Kim, Byoung [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
AUTOMORPHIC L-FUNCTIONS; IWASAWA THEORY; HEEGNER POINTS; PRIMES; GL(2);
D O I
10.1016/j.jnt.2008.08.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By improving the techniques of [B.D. Kim, The parity conjecture for elliptic curves at supersingular reduction primes, Compos. Math. 143 (2007) 47-72] we prove some symmetric structure of the minus Selmer groups of elliptic curves for supersingular primes. This structure was already known for the Selmer groups for ordinary primes [J. Nekovar, On the parity of ranks of Selmer groups II, C. R. Math. Acad. Sci. Paris Set. I 332 (2) (2001) 99-104: J. Nekovar, Selmer complexes, Asterisque 310 (2006)]. One consequence is the parity conjecture over a totally real field under some conditions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1149 / 1160
页数:12
相关论文
共 50 条