Stochastic Approximation Algorithm with Randomization at the Input for Unsupervised Parameters Estimation of Gaussian Mixture Model with Sparse Parameters

被引:4
|
作者
Boiarov, A. A. [1 ,2 ]
Granichin, O. N. [1 ,2 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
[2] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
clustering; unsupervised learning; randomization; stochastic approximation; Gaussian mixture model;
D O I
10.1134/S0005117919080034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the possibilities of using stochastic approximation algorithms with randomization on the input under unknown but bounded interference in studying the clustering of data generated by a mixture of Gaussian distributions. The proposed algorithm, which is robust to external disturbances, allows us to process the data "on the fly" and has a high convergence rate. The operation of the algorithm is illustrated by examples of its use for clustering in various difficult conditions.
引用
收藏
页码:1403 / 1418
页数:16
相关论文
共 50 条
  • [1] Stochastic Approximation Algorithm with Randomization at the Input for Unsupervised Parameters Estimation of Gaussian Mixture Model with Sparse Parameters
    A. A. Boiarov
    O. N. Granichin
    Automation and Remote Control, 2019, 80 : 1403 - 1418
  • [2] Sparse Gaussian Mixture Model Clustering via Simultaneous Perturbation Stochastic Approximation
    Boiarov, Andrei
    Granichin, Oleg
    IFAC PAPERSONLINE, 2020, 53 (02): : 995 - 1000
  • [3] ESTIMATION OF PARAMETERS OF THE INVERSE GAUSSIAN-WEIBULL MIXTURE MODEL
    ALHUSSAINI, EK
    ABDELHAKIM, NS
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (05) : 1607 - 1622
  • [4] A Novel Adaptive Algorithm for Estimation of Sparse Parameters in Non-Gaussian Noise
    Hajiabadi, Mojtaba
    Razeghi, Behrooz
    Mir, Mahdi
    2015 INTERNATIONAL CONFERENCE AND WORKSHOP ON COMPUTING AND COMMUNICATION (IEMCON), 2015,
  • [5] ESTIMATION OF THE PARAMETERS OF A GAUSSIAN MIXTURE USING THE METHOD OF MOMENTS
    FUKUNAGA, K
    FLICK, TE
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (04) : 410 - 416
  • [6] SOFT MARGIN ESTIMATION OF GAUSSIAN MIXTURE MODEL PARAMETERS FOR SPOKEN LANGUAGE RECOGNITION
    Zhu, Donglai
    Ma, Bin
    Li, Haizhou
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 4990 - 4993
  • [7] Joint estimation of feature transformation parameters and Gaussian mixture model for speaker identification
    Yuo, KH
    Wang, HC
    SPEECH COMMUNICATION, 1999, 28 (03) : 227 - 241
  • [8] An Immittance Spectral Frequency parameters quantization Algorithm based on Gaussian Mixture Model
    Wang Xiaochen
    Zhang Yong
    Hu Ruimin
    Du Xi
    MINES 2009: FIRST INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY, VOL 1, PROCEEDINGS, 2009, : 324 - 328
  • [9] A stochastic model of traffic flow: Gaussian approximation and estimation
    Jabari, Saif Eddin
    Liu, Henry X.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2013, 47 : 15 - 41
  • [10] MAP-BASED ESTIMATION OF THE PARAMETERS OF A GAUSSIAN MIXTURE MODEL IN THE PRESENCE OF NOISY OBSERVATIONS
    Chinaev, Aleksej
    Haeb-Umbach, Reinhold
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3352 - 3356