Regression Model to Predict Global Solar Irradiance in Malaysia

被引:8
|
作者
Kutty, Hairuniza Ahmed [1 ]
Masral, Muhammad Hazim [1 ]
Rajendran, Parvathy [1 ]
机构
[1] Univ Sains Malaysia, Sch Aerosp Engn, Nibong Tebal 14300, Pulau Pinang, Malaysia
关键词
RADIATION STATISTICS; DIFFUSE; SUNSHINE;
D O I
10.1155/2015/347023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE), mean bias error (MBE), and the coefficient of determination (R-2) with other models available from literature studies. Seven models based on single parameters (PM1 to PM7) and five multiple-parameter models (PM7 to PM12) are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R-2 ranging from 0.942 to 0.992, and MBE ranging from -0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Development of local atmospheric model for estimating solar irradiance in Peninsular Malaysia
    Yeap, E. C.
    Lau, A. M. S.
    Busu, I.
    Kanniah, K. D.
    Rasib, A. W.
    Kadir, W. H. W.
    8TH INTERNATIONAL SYMPOSIUM OF THE DIGITAL EARTH (ISDE8), 2014, 18
  • [2] A stochastic solar irradiance model adjusted on the Angstrom-Prescott regression
    Morf, Heinrich
    SOLAR ENERGY, 2013, 87 : 1 - 21
  • [3] Model for correcting global solar irradiance measured with rotating shadowband radiometer
    Xing, Hongyan
    Chong, Wei
    Sha, Yizhuo
    Lv, Wenhua
    OPTICAL ENGINEERING, 2012, 51 (04)
  • [4] An adaptive model for predicting of global, direct and diffuse hourly solar irradiance
    Mellit, A.
    Eleuch, H.
    Benghanem, M.
    Elaoun, C.
    Pavan, A. Massi
    ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (04) : 771 - 782
  • [5] Analysis of Solar Irradiance and Solar Energy in Perlis, Northern of Peninsular Malaysia
    Daut, I.
    Zainuddin, Farhana
    Irwan, Y. M.
    Razliana, R. N.
    TERRAGREEN 2012: CLEAN ENERGY SOLUTIONS FOR SUSTAINABLE ENVIRONMENT (CESSE), 2012, 18 : 1421 - 1427
  • [6] A cyclostationary model for temporal forecasting and simulation of solar global horizontal irradiance
    Das, Soumya
    Genton, Marc G.
    Alshehri, Yasser M.
    Stenchikov, Georgiy L.
    ENVIRONMETRICS, 2021, 32 (08)
  • [7] Global validation of a forecast model for irradiance of solar, erythemally effective ultraviolet radiation
    Schmalwieser, AW
    Schauberger, G
    Janouch, M
    Nunez, M
    Koskela, T
    Berger, D
    Karamanian, G
    Prosek, P
    Laska, K
    OPTICAL ENGINEERING, 2002, 41 (12) : 3040 - 3050
  • [8] Measurements of spectral-band solar irradiance in Bangi, Malaysia
    Eltbaakh, Yousef A.
    Ruslan, M. H.
    Alghoul, M. A.
    Othman, M. Y.
    Sopian, K.
    SOLAR ENERGY, 2013, 89 : 62 - 80
  • [9] A general model to predict individual exposure to solar UV by using ambient irradiance data
    Vernez, David
    Milon, Antoine
    Vuilleumier, Laurent
    Bulliard, Jean-Luc
    Koechlin, Alice
    Boniol, Mathieu
    Dore, Jean F.
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2015, 25 (01) : 113 - 118
  • [10] A general model to predict individual exposure to solar UV by using ambient irradiance data
    David Vernez
    Antoine Milon
    Laurent Vuilleumier
    Jean-Luc Bulliard
    Alice Koechlin
    Mathieu Boniol
    Jean F Doré
    Journal of Exposure Science & Environmental Epidemiology, 2015, 25 : 113 - 118