Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels

被引:189
|
作者
Masnadi, Mohammad S. [1 ]
Habibi, Rozita [2 ]
Kopyscinski, Jan [2 ]
Hill, Josephine M. [2 ]
Bi, Xiaotao [1 ]
Lim, C. Jim [1 ]
Ellis, Naoko [1 ]
Grace, John R. [1 ]
机构
[1] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[2] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Pyrolysis; Co-feeding; Biomass; Fossil fuel; Surface analysis; GASIFICATION REACTIVITY; SWITCHGRASS; COMBUSTION; POTASSIUM; LIGNITE; CHARS; WOOD;
D O I
10.1016/j.fuel.2013.02.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It is not well understood how co-feeding of coal and biomass influences the reaction kinetics of gasification and pyrolysis. Co-pyrolysis of biomass and fossil fuels is investigated in this paper. After fuel characterization, the influences of temperature on the physical and chemical properties of char produced from biomass and non-biomass fuels were investigated, and the kinetics of atmospheric-pressure pyrolysis in a nitrogen environment were determined. The results show that product physical properties, such as surface area, depend on the pyrolysis temperature. For individual fuels, pine sawdust char prepared at 750 degrees C had the highest CO2 and N-2 uptake, while switchgrass had very low N-2 uptake, but high CO2 uptake. The surface area of the fluid coke decreased with increasing temperature, but was almost constant for coal. Co-pyrolysis in a thermogravimetric analyzer exhibited three stages. Devolatilization of the biomass and coal portions of blended samples occurred independently, i.e. without significant synergy. The Coats-Redfern method was used to analyze the kinetics of solid fuel pyrolysis, indicating that it can be described by multi-step reactions. The model was able to identify likely reaction mechanisms and activation energies of each pyrolysis stage, giving predictions consistent with the experimental results. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1204 / 1214
页数:11
相关论文
共 50 条
  • [1] TG analysis and kinetics of biomass/plastic co-pyrolysis
    Zhou, Limin
    Wang, Yiping
    Huang, Qunwu
    Cai, Junqing
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2007, 28 (09): : 979 - 983
  • [2] Use of plastic waste as a fuel in the co-pyrolysis of biomass Part III: Optimisation of the co-pyrolysis process
    Sajdak, Marcin
    Muzyka, Roksana
    Hrabak, Joanna
    Slowik, Krzysztof
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2015, 112 : 298 - 305
  • [3] Co-pyrolysis Kinetics of Expandable Polystyrene Foam Plastics and Biomass
    Li, Baoxia
    Jin, Pen
    Cao, Shoukun
    ADVANCES IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-6, 2012, 518-523 : 3295 - 3301
  • [4] Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes
    Burra, K. G.
    Gupta, A. K.
    APPLIED ENERGY, 2018, 220 : 408 - 418
  • [5] Pyrolysis Characteristics and Kinetics of Coal-Biomass Blends during Co-Pyrolysis
    Chen, Xiye
    Liu, Li
    Zhang, Linyao
    Zhao, Yan
    Qiu, Penghua
    ENERGY & FUELS, 2019, 33 (02) : 1267 - 1278
  • [6] Co-pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics
    Thuan Anh Vo
    Quoc Khanh Tran
    Hoang Vu Ly
    Kwon, Byeongwan
    Hwang, Hyun Tae
    Kim, Jinsoo
    Kim, Seung-Soo
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 163
  • [7] Co-pyrolysis of polypropylene and biomass
    Ye, J. L.
    Cao, Q.
    Zhao, Y. S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2008, 30 (18) : 1689 - 1697
  • [8] Use of plastic waste as a fuel in the co-pyrolysis of biomass: Part II. Variance analysis of the co-pyrolysis process
    Sajdak, M.
    Slowik, K.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2014, 109 : 152 - 158
  • [9] Co-pyrolysis of biomass blends: Characterization, kinetic and thermodynamic analysis
    Muigai, Harrison Hihu
    Choudhury, Bhaskar J.
    Kalita, Pankaj
    Moholkar, Vijayanand S.
    BIOMASS & BIOENERGY, 2020, 143
  • [10] CO-PYROLYSIS KINETICS ANALYSIS OF STONE COAL AND BIOMASS FOR VANADIUM EXTRACTION
    Liu, G. Q.
    Liu, K.
    Gao, Y. K.
    Chen, G.
    METALURGIJA, 2018, 57 (04): : 239 - 241