n-Mode Singular Vector Selection in Higher-Order Singular Value Decomposition

被引:1
|
作者
Inoue, Kohei [1 ]
Urahama, Kiichi [1 ]
机构
[1] Kyushu Univ, Fac Design, Fukuoka 8158540, Japan
关键词
dimensionality reduction; higher-order singular value decomposition; n-mode singular vector;
D O I
10.1093/ietfec/e91-a.11.3380
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a method for selecting n-mode singular vectors in higher-order singular value decomposition. We select the minimum number of n-mode singular vectors, when the upper bound of a least-squares cost function is thresholded. The reduced n-ranks of all modes of a given tensor are determined automatically and the tensor is represented with the minimum number of dimensions. We apply the selection method to simultaneous low rank approximation of matrices. Experimental results show the effectiveness of the n-mode singular vector selection method.
引用
收藏
页码:3380 / 3384
页数:5
相关论文
共 50 条
  • [1] The Higher-Order Singular Value Decomposition: Theory and an Application
    Bergqvist, Goran
    Larsson, Erik G.
    IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (03) : 151 - 154
  • [2] Image encryption based on higher-order singular value decomposition
    Li, Yong
    Xun, Xianchao
    Wang, Qingzhu
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2014, 43 : 243 - 247
  • [3] A NEW TRUNCATION STRATEGY FOR THE HIGHER-ORDER SINGULAR VALUE DECOMPOSITION
    Vannieuwenhoven, Nick
    Vandebril, Raf
    Meerbergen, Karl
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A1027 - A1052
  • [4] Ensemble of Tensor Classifiers Based on the Higher-Order Singular Value Decomposition
    Cyganek, Boguslaw
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, 2012, 7209 : 578 - 589
  • [6] Coarse-graining renormalization by higher-order singular value decomposition
    Xie, Z. Y.
    Chen, J.
    Qin, M. P.
    Zhu, J. W.
    Yang, L. P.
    Xiang, T.
    PHYSICAL REVIEW B, 2012, 86 (04):
  • [7] Singular perturbations of a higher-order nonlinear vector boundary value problem
    Shi, Y.
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 28 (08): : 1451 - 1464
  • [8] Fast multilinear Singular Value Decomposition for higher-order Hankel tensors
    Boizard, Maxime
    Boyer, Remy
    Favier, Gerard
    Larzabal, Pascal
    2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 437 - 440
  • [9] A Higher-Order Singular Value Decomposition Tensor Emulator for Spatiotemporal Simulators
    Gopalan, Giri
    Wikle, Christopher K.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 22 - 45
  • [10] A tensor bidiagonalization method for higher-order singular value decomposition with applications
    El Hachimi, A.
    Jbilou, K.
    Ratnani, A.
    Reichel, L.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (02)