A FOURIER TRANSFORM METHOD FOR NONPARAMETRIC ESTIMATION OF MULTIVARIATE VOLATILITY

被引:76
|
作者
Malliavin, Paul [1 ]
Mancino, Maria Elvira [2 ]
机构
[1] Inst France, Acad Sci, F-75004 Paris, France
[2] Univ Florence, Dept Math Decis, Florence, Italy
来源
ANNALS OF STATISTICS | 2009年 / 37卷 / 04期
关键词
Continuous semi-martingale; instantaneous co-volatility; nonparametric estimation; Fourier transform; high frequency data; HIGH-FREQUENCY DATA; MARKET MICROSTRUCTURE NOISE; INTEGRATED VOLATILITY; DIFFUSION-COEFFICIENT; COVARIANCE ESTIMATION; MODELS; SAMPLE; VARIANCE; FEEDBACK; PRICES;
D O I
10.1214/08-AOS633
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a nonparametric method for the computation of instantaneous multivariate volatility for continuous serni-martingales, which is based on Fourier analysis. The co-volatility is reconstructed as a stochastic function of time by establishing a connection between the Fourier transform of the prices process and the Fourier transform of the co-volatility process. A nonparametric estimator is derived given a discrete unevenly spaced and asynchronously sampled observations of the asset price processes. The asymptotic properties of the random estimator are studied: namely, consistency in probability uniformly in time and convergence in law to a mixture of Gaussian distributions.
引用
收藏
页码:1983 / 2010
页数:28
相关论文
共 50 条
  • [1] Limit theorems in the Fourier transform method for the estimation of multivariate volatility
    Clement, Emmanuelle
    Gloter, Arnaud
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (05) : 1097 - 1124
  • [2] A nonparametric estimation method for the multivariate mixture models
    Lu, Nan
    Wang, Lihong
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (17) : 3727 - 3742
  • [3] Nonparametric volatility density estimation
    Van Es, B
    Spreij, P
    Van Zanten, H
    BERNOULLI, 2003, 9 (03) : 451 - 465
  • [4] Nonparametric Estimation of Multivariate Mixtures
    Zheng, Chaowen
    Wu, Yichao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (531) : 1456 - 1471
  • [5] Nonparametric estimation of multivariate quantiles
    Coblenz, M.
    Dyckerhoff, R.
    Grothe, O.
    ENVIRONMETRICS, 2018, 29 (02)
  • [6] Nonparametric estimation of stochastic volatility models
    Renò, R
    ECONOMICS LETTERS, 2006, 90 (03) : 390 - 395
  • [7] Nonparametric estimation of log volatility with wavelets
    Basta, Milan
    APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMY: AMSE 2009, 2009, : 1 - 11
  • [8] Nonparametric estimation for a stochastic volatility model
    Comte, F.
    Genon-Catalot, V.
    Rozenholc, Y.
    FINANCE AND STOCHASTICS, 2010, 14 (01) : 49 - 80
  • [9] Nonparametric estimation for a stochastic volatility model
    F. Comte
    V. Genon-Catalot
    Y. Rozenholc
    Finance and Stochastics, 2010, 14 : 49 - 80
  • [10] Nonparametric estimation in a Stochastic volatility model
    Franke, J
    Härdle, W
    Kreiss, JP
    RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 303 - 313