Usefulness of Machine Learning-Based Detection and Classification of Cardiac Arrhythmias With 12-Lead Electrocardiograms

被引:41
|
作者
Chang, Kuan-Cheng [1 ,2 ]
Hsieh, Po-Hsin [3 ]
Wu, Mei-Yao [4 ,5 ]
Wang, Yu-Chen [1 ,6 ,7 ]
Chen, Jan-Yow [1 ,2 ]
Tsai, Fuu-Jen [8 ]
Shih, Edward S. C. [9 ]
Hwang, Ming-Jing [9 ]
Huang, Tzung-Chi [3 ,10 ,11 ]
机构
[1] China Med Univ Hosp, Div Cardiovasc Med, 2 Yude Rd, Taichung 40447, Taiwan
[2] China Med Univ, Grad Inst Biomed Sci, Taichung, Taiwan
[3] China Med Univ, Dept Biomed Imaging & Radiol Sci, Taichung, Taiwan
[4] China Med Univ, Sch Postbaccalaureate Chinese Med, Taichung, Taiwan
[5] China Med Univ Hosp, Dept Chinese Med, Taichung, Taiwan
[6] Asia Univ Hosp, Div Cardiovasc Med, Taichung, Taiwan
[7] Asia Univ, Dept Biotechnol, Taichung, Taiwan
[8] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[9] Acad Sinica, Inst Biomed Sci, Taipei, Taiwan
[10] China Med Univ Hosp, Artificial Intelligence Ctr, Taichung, Taiwan
[11] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
关键词
BIDIRECTIONAL LSTM; DEEP; CARDIOLOGY; COMMITTEE; IMAGES;
D O I
10.1016/j.cjca.2020.02.096
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Deep-learning algorithms to annotate electrocardiograms (ECGs) and classify different types of cardiac arrhythmias with the use of a single-lead ECG input data set have been developed. It remains to be determined whether these algorithms can be generalized to 12-lead ECG-based rhythm classification. Methods: We used a long short-term memory (LSTM) model to detect 12 heart rhythm classes with the use of 65,932 digital 12-lead ECG signals from 38,899 patients, using annotations obtained by consensus of 3 board-certified electrophysiologists as the criterion standard. Results: The accuracy of the LSTM model for the classification of each of the 12 heart rhythms was >= 0.982 (range 0.982-1.0), with an area under the receiver operating characteristic curve of >= 0.987 (range 0.987-1.0). The precision and recall ranged from 0.692 to 1 and from 0.625 to 1, respectively, with an F-1 score of >= 0.777 (range 0.777-1.0). The accuracy of the model (0.90) was superior to the mean accuracies of internists (0.55), emergency physicians (0.73), and cardiologists (0.83). Conclusions: We demonstrated the feasibility and effectiveness of the deep-learning LSTM model for interpreting 12 common heart rhythms according to 12-lead ECG signals. The findings may have clinical relevance for the early diagnosis of cardiac rhythm disorders.
引用
收藏
页码:94 / 104
页数:11
相关论文
共 50 条
  • [1] Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms
    Vranken, Jeroen F.
    van de Leur, Rutger R.
    Gupta, Deepak K.
    Orozco, Luis E. Juarez
    Hassink, Rutger J.
    van der Harst, Pim
    Doevendans, Pieter A.
    Gulshad, Sadaf
    van Es, Rene
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (03): : 401 - 415
  • [2] Cardiac Pathologies Detection and Classification in 12-lead ECG
    Smisek, Radovan
    Nemcova, Andrea
    Marsanova, Lucie
    Smital, Lukas
    Vitek, Martin
    Kozumplik, Jiri
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [3] Classification of 12-Lead Electrocardiograms Using Residual Neural Networks and Transfer Learning
    Ansari, Sardar
    Gillies, Christopher E.
    Cummings, Brandon
    Motyka, Jonathan
    Wang, Guan
    Ward, Kevin R.
    Ghanbari, Hamid
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [4] Automatic Classification Method of Arrhythmias Based on 12-Lead Electrocardiogram
    Yang, Xiao
    Ji, Zhong
    SENSORS, 2023, 23 (09)
  • [5] Classification of 12-lead ECG With an Ensemble Machine Learning Approach
    Bodini, Matteo
    Rivolta, Massimo W.
    Sassi, Roberto
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [6] Cardiac Fibrosis Detection Applying Machine Learning Techniques to Standard 12-Lead ECG
    Melgarejo-Meseguer, F. M.
    Gimeno-Blanes, F. J.
    Rojo-Alvarez, J. L.
    Salar-Alcaraz, M.
    Gimeno-Blanes, J. R.
    Garcia-Alberola, A.
    2018 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2018, 45
  • [7] Detection and delineation of P and T waves in 12-lead electrocardiograms
    Mehta, Sarabjeet
    Lingayat, Nitin
    Sanghvi, Sanjeev
    EXPERT SYSTEMS, 2009, 26 (01) : 125 - 143
  • [8] Detection of STEMI Using Prehospital Serial 12-Lead Electrocardiograms
    Tanguay, Alain
    Lebon, Johann
    Lau, Lorraine
    Hebert, Denise
    Begin, Francois
    PREHOSPITAL EMERGENCY CARE, 2018, 22 (04) : 419 - 426
  • [9] A hybrid machine learning approach to localizing the origin of ventricular tachycardia using 12-lead electrocardiograms
    Missel, Ryan
    Gyawali, Prashnna K.
    Murkute, Jaideep Vitthal
    Li, Zhiyuan
    Zhou, Shijie
    AbdelWahab, Amir
    Davis, Jason
    Warren, James
    Sapp, John L.
    Wang, Linwei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 126 (126)
  • [10] Benchmarking the Impact of Noise on Deep Learning-Based Classification of Atrial Fibrillation in 12-Lead ECG
    Bender, Theresa
    Gemke, Philip
    Idrobo-Avila, Ennio
    Dathe, Henning
    Krefting, Dagmar
    Spicher, Nicolai
    CARING IS SHARING-EXPLOITING THE VALUE IN DATA FOR HEALTH AND INNOVATION-PROCEEDINGS OF MIE 2023, 2023, 302 : 977 - 981