The Effect Evaluation of Density Estimation through Non-Gaussian Measurement

被引:0
|
作者
Zhao, Feng [1 ,2 ]
An, Zhiyong [1 ,2 ]
Jiang, Hailan [3 ]
机构
[1] Shandong Inst Business & Technol, Sch Comp Sci & Technol, Yantai 264005, Peoples R China
[2] Shandong Univ, Shandong Inst Business & Technol, Key Lab Intelligent Informat Proc, Yantai 264005, Peoples R China
[3] Shandong Polytech, Dept Informat Engn, Jinan 250104, Peoples R China
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2014年 / 8卷 / 02期
基金
中国国家自然科学基金;
关键词
Density estimation; hypothesis testing; non-Gaussian measurement;
D O I
10.12785/amis/080236
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
How to test the effect of density estimation methods is the key problem in the statistics. This paper presents a new criterion for assessing the effect of density estimation to select the suitable density estimation method, using the maximum-entropy non-Gaussian measurement. Comparing with chi(2)-test and D-n-test, the method avoids the problem of the data interval division, and it is suitable for any type probability distribution. Simulation results show that the proposed method can accurately discriminate the pros and cons of different density estimation methods..
引用
收藏
页码:761 / 764
页数:4
相关论文
共 50 条
  • [1] Gaussian State Estimation with Non-Gaussian Measurement Noise
    Tollkuehn, Andreas
    Particke, Florian
    Thielecke, Joern
    2018 SYMPOSIUM ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2018,
  • [2] Non-Gaussian Component Analysis with Log-Density Gradient Estimation
    Sasaki, Hiroaki
    Niu, Gang
    Sugiyama, Masashi
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1177 - 1185
  • [3] Transmission Line Parameter Estimation Under Non-Gaussian Measurement Noise
    Varghese, Antos Cheeramban
    Pal, Anamitra
    Dasarathy, Gautam
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (04) : 3147 - 3162
  • [4] Non-Gaussian models for CoVaR estimation
    Bianchi, Michele Leonardo
    De Luca, Giovanni
    Rivieccio, Giorgia
    INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (01) : 391 - 404
  • [5] Performance evaluation of time-delay estimation in non-Gaussian conditions
    Shor, G
    Messer, H
    PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1997, : 20 - 23
  • [6] Non-Gaussian probabilistic MEG source localisation based on kernel density estimation
    Mohseni, Hamid R.
    Kringelbach, Morten L.
    Woolrich, Mark W.
    Baker, Adam
    Aziz, Tipu Z.
    Probert-Smith, Penny
    NEUROIMAGE, 2014, 87 : 444 - 464
  • [7] A EM-Kernel density method for channel estimation in non-Gaussian noise
    Bhatia, V
    Mulgrew, B
    VTC2004-FALL: 2004 IEEE 60TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-7: WIRELESS TECHNOLOGIES FOR GLOBAL SECURITY, 2004, : 3871 - 3875
  • [8] Exact Modeling of Non-Gaussian Measurement Uncertainty in Distribution System State Estimation
    Vanin, Marta
    Van Acker, Tom
    D'hulst, Reinhilde
    Van Hertem, Dirk
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [9] Evaluation of a non-Gaussian puff model
    Tirabassi, T
    Mangia, C
    Rizza, U
    Degrazia, GA
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2001, 16 (1-6) : 9 - 15
  • [10] A MODIFIED GAUSSIAN SUM APPROACH TO ESTIMATION OF NON-GAUSSIAN SIGNALS
    CAPUTI, MJ
    MOOSE, RL
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1993, 29 (02) : 446 - 451