Estimating the Number of Zeros for Abelian Integrals of Quadratic Reversible Centers with Orbits Formed by Higher-Order Curves

被引:10
|
作者
Hong, Xiaochun [1 ]
Xie, Shaolong [2 ]
Chen, Longwei [3 ]
机构
[1] Yunnan Univ Finance & Econ, Sch Math & Stat, Yunnan TongChuang Sci Comp & Data Min Res Ctr, Kunming 650221, Yunnan, Peoples R China
[2] Yuxi Normal Univ, Sch Business, Yuxi 653100, Yunnan, Peoples R China
[3] Yunnan Univ Finance & Econ, Sch Math & Stat, Kunming 650221, Yunnan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 02期
关键词
Quadratic reversible center; Abelian integral; weakened 16th Hilbert problem; LIMIT-CYCLES; GLOBAL BIFURCATION; LINEAR ESTIMATE; ALMOST-ALL; CYCLICITY; SYSTEM; FAMILY;
D O I
10.1142/S0218127416500206
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we determine the associated number of zeros for Abelian integrals in four classes of quadratic reversible centers of genus one. Based on the results of [Li et al., 2002b], we prove that the upper bounds of the associated number of zeros for Abelian integrals with orbits formed by conics, cubics, quartics, and sextics, under polynomial perturbations of arbitrary degree n, depend linearly on n.
引用
收藏
页数:16
相关论文
共 26 条