GaAs manufacturing processes conditions for micro- and nanoscale devices

被引:11
|
作者
Joint, F. [1 ,2 ]
Abadie, C. [1 ]
Vigneron, P. B. [1 ,3 ]
Boulley, L. [1 ]
Bayle, F. [1 ]
Isac, N. [1 ]
Cavanna, A. [1 ]
Cambril, E. [1 ]
Herth, E. [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, CNRS, Ctr Nanosci & Nanotechnol,UMR 9001, Palaiseau, France
[2] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA
[3] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
关键词
Microfabrication; Nanofabrication; Dry etching; Chlorine plasma; HIGH-ASPECT-RATIO; GAAS/ALGAAS; SIDEWALL; PLASMA; DEFECTS; WAFERS; N-2;
D O I
10.1016/j.jmapro.2020.11.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High aspect-ratio etchings are a key aspect of the fabrication of III-V semiconductor devices. The increasing demand for diverse geometries with various characteristic lengths (from the micro- to the nano-meter scale) requires the constant development of new etching recipes. In this article, we demonstrate a versatile mask-plasma combination for micro- and nanofabrication of GaAs substrate using an Inductive Coupled Plasma Reactive Ion Etching (ICP-RIE) system. We identify five recipes at 25 degrees C, with high selectivity, and apply them on one photoresist (AZ4562) and two hard (chromium and nickel) masks. The optimized etching plasma chemistry (BCl3/Cl-2/Ar/N-2) shows a pattern transfer on GaAs with a high rate (>= 5.5 mu m/min), a high anisotropy, a high selectivity (>4:1 with photoresist mask, and >50:1 with hard masks), a good etch surface morphology, and smooth sidewalls profile (>88 degrees). Herein, we detail the requirements definition, the engineering processes with detailed recipes, the verification, and validation of three device geometries (ridges, cylinders, and nano pillars). The presented results can be valuable for a wide range of applications from the microscale to the nanoscale, and are compatible with a manufacturing process using only a single commercial ICP-RIE tool with two chambers dedicated, respectively, for metallic masks and photoresist mask.
引用
收藏
页码:666 / 672
页数:7
相关论文
共 50 条
  • [1] A submicron multiaxis positioning stage for micro- and nanoscale manufacturing processes
    Balasubramanian, Ashwin
    Jun, Martin B. G.
    DeVor, Richard E.
    Kapoor, Shiv G.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (03): : 0311121 - 0311128
  • [2] Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics
    Aguilar, Carlos A.
    Craighead, Harold G.
    NATURE NANOTECHNOLOGY, 2013, 8 (10) : 709 - 718
  • [3] Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics
    Carlos A. Aguilar
    Harold G. Craighead
    Nature Nanotechnology, 2013, 8 : 709 - 718
  • [4] Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing
    Hengsteler, Julian
    Kanes, Karuna Aurel
    Khasanova, Liaisan
    Momotenko, Dmitry
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2023, 16 : 71 - 91
  • [5] Cashmere-derived keratin for device manufacturing on the micro- and nanoscale
    Marelli, Benedetto
    Omenetto, Fiorenzo G.
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (12) : 2783 - 2787
  • [6] MANUFACTURING OF ADVANCED MATERIALS FROM MACRO-, MICRO- TO NANOSCALE
    Mamalis, A. G.
    13TH INTERNATIONAL CONFERENCE ON TOOLS, 2012, : 27 - 32
  • [7] Micro- and Nanoscale Devices For Controlling Two-Dimensional Chemistry
    Czolkos, Ilja
    Hannestad, Jonas K.
    Jesorka, Aldo
    Albinsson, Bo
    Orwar, Owe
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 79A - 79A
  • [8] Deoxyribonucleic Acid Mediated Heterogeneous Integration of Micro- and Nanoscale Devices
    Yesudas, Joshy P.
    Olsen, Trevor
    Ng, Jason
    Kovalenko, Andriy
    Dew, Steven K.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (07) : 7301 - 7313
  • [9] Biomimetic patterned surfaces for controllable friction in micro- and nanoscale devices
    Singh A.
    Suh K.-Y.
    Micro and Nano Systems Letters, 1 (1)
  • [10] Micro-/nanoscale electroporation
    Chang, Lingqian
    Li, Lei
    Shi, Junfeng
    Sheng, Yan
    Lu, Wu
    Gallego-Perez, Daniel
    Lee, Ly James
    LAB ON A CHIP, 2016, 16 (21) : 4047 - 4062