Well-posedness of a Debye type system endowed with a full wave equation

被引:1
|
作者
Heibig, Arnaud [1 ]
机构
[1] Univ Lyon, Inst Camille Jordan, INSA Lyon, Bat Leonard de Vinci 401,21 Ave Jean Capelle, F-69621 Villeurbanne, France
关键词
Transport-diffusion equation; Wave equation; Debye system; Chemin-Lerner spaces; Gagliardo-Nirenberg inequalities; TIME BEHAVIOR; EXISTENCE;
D O I
10.1016/j.aml.2018.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove well-posedness for a transport-diffusion problem coupled with a wave equation for the potential. We assume that the initial data are small. A bilinear form in the spirit of Kato's proof for the Navier-Stokes equations is used, coupled with suitable estimates in Chemin-Lerner spaces. In the one dimensional case, we get well-posedness for arbitrarily large initial data by using Gagliardo-Nirenberg inequalities. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [1] Probabilistic well-posedness for the cubic wave equation
    Burq, Nicolas
    Tzvetkov, Nikolay
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (01) : 1 - 30
  • [2] ON WELL-POSEDNESS OF A MIXED PROBLEM FOR THE WAVE EQUATION
    Gordienko, V. M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : C130 - C138
  • [3] On well-posedness and wave operator for the gKdV equation
    Farah, Luiz G.
    Pastor, Ademir
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (03): : 229 - 241
  • [4] Local well-posedness of a quasilinear wave equation
    Doerfler, Willy
    Gerner, Hannes
    Schnaubelt, Roland
    APPLICABLE ANALYSIS, 2016, 95 (09) : 2110 - 2123
  • [5] Global well-posedness for the critical Schrodinger-Debye system
    Carvajal, Xavier
    Gamboa, Pedro
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2014, 11 (03) : 251 - 268
  • [6] Global well-posedness for the nonlinear damped wave equation with logarithmic type nonlinearity
    Lu Yang
    Wei Gao
    Soft Computing, 2020, 24 : 2873 - 2885
  • [7] Global well-posedness for the nonlinear damped wave equation with logarithmic type nonlinearity
    Yang, Lu
    Gao, Wei
    SOFT COMPUTING, 2020, 24 (04) : 2873 - 2885
  • [8] Well-posedness and wave breaking of the degenerate Novikov equation
    Fu, Ying
    Qu, Changzheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (08) : 4634 - 4657
  • [9] On the well-posedness and regularity of the wave equation with variable coefficients
    Guo, Bao-Zhu
    Zhang, Zhi-Xiong
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (04) : 776 - 792
  • [10] Well-posedness of nonlinear wave equation with combined power-type nonlinearities
    Xu Runzhang
    Xu Chuang
    Liu Yang
    Yu Tao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (08) : 869 - 895