Evolving Node Embeddings for Dynamic Exploration of Network Topologies

被引:1
|
作者
Enes, Karen B. [1 ]
Nunes, Matheus [1 ]
Murai, Fabricio [1 ]
Pappa, Gisele L. [1 ]
机构
[1] Univ Fed Minas Gerais UFMG, Comp Sci Dept DCC, Belo Horizonte, MG, Brazil
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE-IBERAMIA 2022 | 2022年 / 13788卷
关键词
Node embeddings; Evolving graphs; Representation learning;
D O I
10.1007/978-3-031-22419-5_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Static node embedding algorithms applied to snapshots of real-world applications graphs are unable to capture their evolving process. As a result, the absence of information about the dynamics in these node representations can harm the accuracy and increase processing time of machine learning tasks related to these applications. We propose a biased random walk method named Evolving Node Embedding (EVNE), which leverages the sequential relationship of graph snapshots by incorporating historic information when generating embeddings for the next snapshot. EVNE learns node representations through a neural network, but differs from existing methods as it: (i) incorporates previously run walks at each step; (ii) starts the optimization of the current embedding from the parameters obtained in the previous iteration; and (iii) uses two time-varying parameters to regulate the behavior of the biased random walks over the process of graph exploration. Through a wide set of experiments we show that our approach generates better embeddings, outperforming baselines in a downstream node classification task.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [1] Temporally-aware node embeddings for evolving networks topologies
    Enes, Karen B.
    Nunes, Matheus
    Murai, Fabricio
    Pappa, Gisele L.
    AI COMMUNICATIONS, 2024, 37 (03) : 411 - 428
  • [2] Evolving topologies for Network Synchronization
    DeLellis, Pietro
    diBernardo, Mario
    Garofalo, Franco
    Porfiri, Maurizio
    2010 COMPLEXITY IN ENGINEERING: COMPENG 2010, PROCEEDINGS, 2010, : 115 - 117
  • [3] Node embeddings in dynamic graphs
    Ferenc Béres
    Domokos M. Kelen
    Róbert Pálovics
    András A. Benczúr
    Applied Network Science, 4
  • [4] Node embeddings in dynamic graphs
    Beres, Ferenc
    Kelen, Domokos M.
    Palovics, Robert
    Benczur, Andras A.
    APPLIED NETWORK SCIENCE, 2019, 4 (01)
  • [5] Dynamic Word Embeddings for Evolving Semantic Discovery
    Yao, Zijun
    Sun, Yifan
    Ding, Weicong
    Rao, Nikhil
    Xiong, Hui
    WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 673 - 681
  • [6] Node Embeddings in Social Network Analysis
    Thuy Vu
    Parker, D. Stott
    PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015), 2015, : 326 - 329
  • [7] Dynamic Node Embeddings From Edge Streams
    Lee, John Boaz
    Nguyen, Giang
    Rossi, Ryan A.
    Ahmed, Nesreen K.
    Koh, Eunyee
    Kim, Sungchul
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (06): : 931 - 946
  • [8] Unsupervised network embeddings with node identity awareness
    Gutierrez-Gomez, Leonardo
    Delvenne, Jean-Charles
    APPLIED NETWORK SCIENCE, 2019, 4 (01)
  • [9] Unsupervised network embeddings with node identity awareness
    Leonardo Gutiérrez-Gómez
    Jean-Charles Delvenne
    Applied Network Science, 4
  • [10] Critical Properties of Cellular Automata with Evolving Network Topologies
    Darabos, Christian
    Moore, Jason H.
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 2105 - 2112