Using multiple imputation for analysis of incomplete data in clinical research

被引:65
|
作者
McCleary, L [1 ]
机构
[1] Baycrest Ctr Geriatr Care, Kunin Lunenfeld Appl Res Unit, Toronto, ON M6A 2E1, Canada
关键词
data interpretation; models; research design; statistical;
D O I
10.1097/00006199-200209000-00012
中图分类号
R47 [护理学];
学科分类号
1011 ;
摘要
Background: Sample loss and missing data are inevitable in multivariate and longitudinal research. Ad hoc approaches such as analysis of incomplete data or substituting the group mean for missing data, while common, may unnecessarily reduce statistical power and threaten study validity. Multiple imputation for missing data is a newly accessible, methodologically rigorous approach to dealing with the problem of missing data. Approach: To (a) discuss the problem of missing data in clinical research, and (b) describe the technique of multiple imputation. A case of analysis of multivariate psychosocial data is presented to illustrate the practice of multiple imputation. Results: The advantages of multiple imputation are it (a) results in unbiased estimates, providing more validity than ad hoc approaches to missing data; (b) uses all available data, preserving sample size and statistical power; (c) may be used with standard statistical software; and, (d) results are readily interpreted. Discussion: Accessible, user-friendly computer programs are available to perform multiple imputation for missing data making ad hoc approaches to missing data obsolete.
引用
收藏
页码:339 / 343
页数:5
相关论文
共 50 条
  • [1] On using multiple imputation for exploratory factor analysis of incomplete data
    Nassiri, Vahid
    Lovik, Aniko
    Molenberghs, Geert
    Verbeke, Geert
    BEHAVIOR RESEARCH METHODS, 2018, 50 (02) : 501 - 517
  • [2] On using multiple imputation for exploratory factor analysis of incomplete data
    Vahid Nassiri
    Anikó Lovik
    Geert Molenberghs
    Geert Verbeke
    Behavior Research Methods, 2018, 50 : 501 - 517
  • [3] Analysis of incomplete longitudinal binary data using multiple imputation
    Li, Xiaoming
    Mehrotra, Devan V.
    Barnard, John
    STATISTICS IN MEDICINE, 2006, 25 (12) : 2107 - 2124
  • [4] Multiple Imputation for Incomplete Data in Environmental Epidemiology Research
    Prince Addo Allotey
    Ofer Harel
    Current Environmental Health Reports, 2019, 6 : 62 - 71
  • [5] Multiple Imputation for Incomplete Data in Environmental Epidemiology Research
    Allotey, Prince Addo
    Harel, Ofer
    CURRENT ENVIRONMENTAL HEALTH REPORTS, 2019, 6 (02) : 62 - 71
  • [6] MULTIPLE IMPUTATION OF INCOMPLETE CATEGORICAL DATA USING LATENT CLASS ANALYSIS
    Vermunt, Jeroen K.
    van Ginkel, Joost R.
    van der Ark, L. Andries
    Sijtsma, Klaas
    SOCIOLOGICAL METHODOLOGY, VOL 38, 2008, 38 : 369 - 397
  • [7] Multiple imputation for analysis of incomplete data in distributed health data networks
    Changgee Chang
    Yi Deng
    Xiaoqian Jiang
    Qi Long
    Nature Communications, 11
  • [8] Multiple imputation for analysis of incomplete data in distributed health data networks
    Chang, Changgee
    Deng, Yi
    Jiang, Xiaoqian
    Long, Qi
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] Cost-effectiveness in clinical trials: using multiple imputation to deal with incomplete cost data
    Burton, Andrea
    Billingham, Lucinda Jane
    Bryan, Stirling
    CLINICAL TRIALS, 2007, 4 (02) : 154 - 161
  • [10] Missing Data in Clinical Research: A Tutorial on Multiple Imputation
    Austin, Peter C.
    White, Ian R.
    Lee, Douglas S.
    van Buuren, Stef
    CANADIAN JOURNAL OF CARDIOLOGY, 2021, 37 (09) : 1322 - 1331