In-cloud processes of methacrolein under simulated conditions - Part 2: Formation of secondary organic aerosol

被引:58
|
作者
El Haddad, I. [1 ,2 ,3 ]
Liu, Yao [1 ,2 ,3 ]
Nieto-Gligorovski, L. [1 ,2 ,3 ]
Michaud, V. [4 ]
Temime-Roussel, B. [1 ,2 ,3 ]
Quivet, E. [1 ,2 ,3 ]
Marchand, N. [1 ,2 ,3 ]
Sellegri, K. [4 ]
Monod, A. [1 ,2 ,3 ]
机构
[1] Univ Aix Marseille 1, CNRS, UMR 6264, Lab Chim Provence,Equipe IRA, F-13331 Marseille 3, France
[2] Univ Aix Marseille 2, CNRS, UMR 6264, Lab Chim Provence,Equipe IRA, F-13331 Marseille 3, France
[3] Univ Aix Marseille 3, CNRS, UMR 6264, Lab Chim Provence,Equipe IRA, F-13331 Marseille 3, France
[4] Univ Clermont Ferrand, Observ Phys Globe Clermont Ferrand, UMR 6016, Lab Meteorol Phys, F-63177 Aubiere, France
关键词
MASS-SPECTROMETRY; AQUEOUS-PHASE; CHEMICAL-COMPOSITION; DICARBOXYLIC-ACIDS; OXIDATION-PRODUCTS; OLIGOMER FORMATION; ISOPRENE; PHOTOOXIDATION; MODEL; PACIFIC;
D O I
10.5194/acp-9-5107-2009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The fate of methacrolein in cloud evapo-condensation cycles was experimentally investigated. To this end, aqueous-phase reactions of methacrolein with OH radicals were performed (as described in Liu et al., 2009), and the obtained solutions were then nebulized and dried into a mixing chamber. ESI-MS and ESI-MS/MS analyses of the aqueous phase composition denoted the formation of high molecular weight multifunctional products containing hydroxyl, carbonyl and carboxylic acid moieties. The time profiles of these products suggest that their formation can imply radical pathways. These high molecular weight organic products are certainly responsible for the formation of secondary organic aerosol (SOA) observed during the nebulization experiments. The size, number and mass concentration of these particles increased significantly with the reaction time: after 22 h of reaction, the aerosol mass concentration was about three orders of magnitude higher than the initial aerosol quantity. The evaluated SOA yield ranged from 2 to 12%. These yields were confirmed by another estimation method based on the hygroscopic and volatility properties of the obtained SOA measured and reported by Michaud et al. (2009). These results provide, for the first time to our knowledge, strong experimental evidence that cloud processes can act, through photooxidation reactions, as important contributors to secondary organic aerosol formation in the troposphere.
引用
收藏
页码:5107 / 5117
页数:11
相关论文
共 50 条
  • [1] In-cloud processes of methacrolein under simulated conditions - Part 3: Hygroscopic and volatility properties of the formed secondary organic aerosol
    Michaud, V.
    El Haddad, I.
    Liu, Yao
    Sellegri, K.
    Laj, P.
    Villani, P.
    Picard, D.
    Marchand, N.
    Monod, A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) : 5119 - 5130
  • [2] In-cloud processes of methacrolein under simulated conditions - Part 1: Aqueous phase photooxidation
    Liu, Yao
    El Haddad, I.
    Scarfogliero, M.
    Nieto-Gligorovski, L.
    Temime-Roussel, B.
    Quivet, E.
    Marchand, N.
    Picquet-Varrault, B.
    Monod, A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) : 5093 - 5105
  • [3] Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation
    Giorio, Chiara
    Monod, Anne
    Bregonzio-Rozier, Lola
    DeWitt, Helen Langley
    Cazaunau, Mathieu
    Temime-Roussel, Brice
    Gratien, Aline
    Michoud, Vincent
    Pangui, Edouard
    Ravier, Sylvain
    Zielinski, Arthur T.
    Tapparo, Andrea
    Vermeylen, Reinhilde
    Claeys, Magda
    Voisin, Didier
    Kalberer, Markus
    Doussin, Jean-Francois
    JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (40): : 7641 - 7654
  • [4] Cloud forming potential of secondary organic aerosol under near atmospheric conditions
    Duplissy, J.
    Gysel, Martin
    Alfarra, M.R.
    Dommen, J.
    Metzger, A.
    Prevot, A.S.H.
    Weingartner, E.
    Laaksonen, A.
    Raatikainen, T.
    Good, N.
    Turner, S.F.
    McFiggans, G.
    Baltensperger, U.
    Geophysical Research Letters, 2008, 35 (02)
  • [5] Cloud forming potential of secondary organic aerosol under near atmospheric conditions
    Duplissy, J.
    Gysel, M.
    Alfarra, M. R.
    Dommen, J.
    Metzger, A.
    Prevot, A. S. H.
    Weingartner, E.
    Laaksonen, A.
    Raatikainen, T.
    Good, N.
    Turner, S. F.
    McFiggans, G.
    Baltensperger, U.
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (03)
  • [6] Large contribution of in-cloud production of secondary organic aerosol from biomass burning emissions
    Wang, Tiantian
    Li, Kun
    Bell, David M.
    Zhang, Jun
    Cui, Tianqu
    Surdu, Mihnea
    Baltensperger, Urs
    Slowik, Jay G.
    Lamkaddam, Houssni
    El Haddad, Imad
    Prevot, Andre S. H.
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2024, 7 (01):
  • [7] Secondary Organic Aerosol Formation from Nitrophenols Photolysis under Atmospheric Conditions
    Bejan, Iustinian Gabriel
    Olariu, Romeo-Iulian
    Wiesen, Peter
    ATMOSPHERE, 2020, 11 (12)
  • [8] Secondary organic aerosol formation from methacrolein photooxidation: roles of NOx level, relative humidity and aerosol acidity
    Zhang, Haofei
    Lin, Ying-Hsuan
    Zhang, Zhenfa
    Zhang, Xiaolu
    Shaw, Stephanie L.
    Knipping, Eladio M.
    Weber, Rodney J.
    Gold, Avram
    Kamens, Richard M.
    Surratt, Jason D.
    ENVIRONMENTAL CHEMISTRY, 2012, 9 (03) : 247 - 262
  • [9] Impact of Aerosol-Cloud Cycling on Aqueous Secondary Organic Aerosol Formation
    Tsui, William G.
    Woo, Joseph L.
    McNeill, V. Faye
    ATMOSPHERE, 2019, 10 (11)
  • [10] Gaseous products and secondary organic aerosol formation during long term oxidation of isoprene and methacrolein
    Bregonzio-Rozier, L.
    Siekmann, F.
    Giorio, C.
    Pangui, E.
    Morales, S. B.
    Temime-Roussel, B.
    Gratien, A.
    Michoud, V.
    Ravier, S.
    Cazaunau, M.
    Tapparo, A.
    Monod, A.
    Doussin, J-F
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (06) : 2953 - 2968