Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2

被引:0
|
作者
Joe, Y. I. [1 ,2 ]
Chen, X. M. [1 ,2 ]
Ghaemi, P. [1 ,2 ]
Finkelstein, K. D. [3 ]
de la Pena, G. A. [1 ,2 ]
Gan, Y. [1 ,2 ]
Lee, J. C. T. [1 ,2 ]
Yuan, S. [1 ,2 ]
Geck, J. [4 ]
MacDougall, G. J. [1 ,2 ]
Chiang, T. C. [1 ,2 ]
Cooper, S. L. [1 ,2 ]
Fradkin, E. [1 ,2 ]
Abbamonte, P. [1 ,2 ,5 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[3] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA
[4] Leibniz Inst Solid State & Mat Res, D-01171 Dresden, Germany
[5] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SUPERLATTICE FORMATION; X-RAY;
D O I
10.1038/NPHYS2935
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superconductivity in so-called unconventional superconductors is nearly always found in the vicinity of another ordered state, such as antiferromagnetism, charge density wave (CDW), or stripe order. This suggests a fundamental connection between superconductivity and fluctuations in some other order parameter. To better understand this connection, we used high-pressure X-ray scattering to directly study the CDW order in the layered dichalcogenide TiSe2, which was previously shown to exhibit superconductivity when the CDW is suppressed by pressure(1) or intercalation of Cu atoms(2). We succeeded in suppressing the CDW fully to zero temperature, establishing for the first time the existence of aquantum critical point (QCP) at P-c = 5.1 +/- 0.2 GPa, which is more than 1 GPa beyond the end of the superconducting region. Unexpectedly, at P = 3 GPa we observed a reentrant, weakly first order, incommensurate phase, indicating the presence of a Lifshitz tricritical point somewhere above the superconducting dome. Our study suggests that superconductivity in TiSe2 may not be connected to the QCP itself, but to the formation of CDW domain walls.
引用
收藏
页码:421 / 425
页数:5
相关论文
共 50 条
  • [1] Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe 2
    Joe Y.I.
    Chen X.M.
    Ghaemi P.
    Finkelstein K.D.
    De La Peña G.A.
    Gan Y.
    Lee J.C.T.
    Yuan S.
    Geck J.
    MacDougall G.J.
    Chiang T.C.
    Cooper S.L.
    Fradkin E.
    Abbamonte P.
    Nature Physics, 2014, 10 (6) : 421 - 425
  • [2] Influence of Domain Walls in the Incommensurate Charge Density Wave State of Cu Intercalated 1T-TiSe2
    Yan, Shichao
    Iaia, Davide
    Morosan, Emilia
    Fradkin, Eduardo
    Abbamonte, Peter
    Madhavan, Vidya
    PHYSICAL REVIEW LETTERS, 2017, 118 (10)
  • [3] Origin of the charge density wave in 1T-TiSe2
    Zhu, Zhiyong
    Cheng, Yingchun
    Schwingenschloegl, Udo
    PHYSICAL REVIEW B, 2012, 85 (24):
  • [4] Resistivity anisotropy and charge density wave in 1T-TiSe2
    Nader, A.
    LeBlanc, A.
    INDIAN JOURNAL OF PHYSICS, 2013, 87 (04) : 363 - 366
  • [5] The chiral charge density wave transition in 1T-TiSe2
    van Wezel, Jasper
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS (SCES 2011), 2012, 391
  • [6] Anisotropic charge density wave in layered 1T-TiSe2
    Qiao, Qiao
    Zhou, Songsong
    Tao, Jing
    Zheng, Jin-Cheng
    Wu, Lijun
    Ciocys, Samuel T.
    Iavarone, Maria
    Srolovitz, David J.
    Karapetrov, Goran
    Zhu, Yimei
    PHYSICAL REVIEW MATERIALS, 2017, 1 (05):
  • [7] Electronically Seamless Domain Wall of Chiral Charge Density Wave in 1T-TiSe2
    Kim, Hyeonjung
    Jin, Kyung-Hwan
    Yeom, Han Woong
    NANO LETTERS, 2024, 24 (45) : 14323 - 14328
  • [8] Resistivity anisotropy and charge density wave in 1T-TiSe2
    A Nader
    A LeBlanc
    Indian Journal of Physics, 2013, 87 : 363 - 366
  • [9] Dichotomy of metallic electron density and charge density wave in 1T-TiSe2
    Jeong, Dongjoon
    Kim, Jimin
    Jin, Kyung-Hwan
    Kim, Jaeyoung
    Yeom, Han Woong
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [10] Charge-density-wave melted superconductivity in 1T-TiSe2
    Hu, Q.
    Liu, J. Y.
    Shi, Q.
    Zhang, F. J.
    Zhong, Y.
    Lei, L.
    Ang, R.
    EPL, 2021, 135 (05)