Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK

被引:9
|
作者
Wang, Kaier [1 ]
Steyn-Ross, Moira L. [1 ]
Steyn-Ross, D. Alistair [1 ]
Wilson, Marcus T. [1 ]
Sleigh, Jamie W. [2 ]
Shiraishi, Yoichi [3 ]
机构
[1] Univ Waikato, Sch Engn, Hamilton 3240, New Zealand
[2] Univ Auckland, Waikato Clin Sch, Waikato Hosp, Hamilton 3204, New Zealand
[3] Gunma Univ, Dept Prod Sci & Technol, Ohta, Gunma 3730052, Japan
关键词
SIMULINK modelling; Brusselator model; Cortical model; Turing-Hopf pattern; LOCALIZED STRUCTURES; DEFAULT MODE; SPATIOTEMPORAL DYNAMICS; ELECTRICAL-ACTIVITY; SELF-ORGANIZATION; BRAIN; PROPAGATION; STABILITY; EQUATION; WAVES;
D O I
10.1186/1752-0509-8-45
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or MATLAB) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as SIMULINK to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. Results: As a tutorial introduction, we first demonstrate application of the SIMULINK data-flow technique to the classical van der Pol nonlinear oscillator, and compare MATLAB and SIMULINK coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the MATLAB and SIMULINK implementations. Conclusions: The pattern simulations by SIMULINK are in good agreement with theoretical predictions. Compared with traditional coding approaches, the SIMULINK block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] DELAY REACTION-DIFFUSION SYSTEMS VIA DISCRETE DYNAMICS
    Ruiz-Herrera, Alfonso
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) : 6297 - 6312
  • [2] SIMULATIONS OF STOCHASTIC REACTION-DIFFUSION SYSTEMS
    HEBERT, DJ
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1992, 34 (05) : 411 - 432
  • [3] The local integral equation method for pattern formation simulations in reaction-diffusion systems
    Sladek, V.
    Sladek, J.
    Shirzadi, A.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 50 : 329 - 340
  • [4] Pattern dynamics of the reaction-diffusion immune system
    Zheng, Qianqian
    Shen, Jianwei
    Wang, Zhijie
    PLOS ONE, 2018, 13 (01):
  • [5] ANOMALOUS DYNAMICS IN REACTION-DIFFUSION SYSTEMS
    HAVLIN, S
    ARAUJO, M
    LARRALDE, H
    SHEHTER, A
    STANLEY, HE
    TRUNFIO, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (08): : 1039 - 1051
  • [6] Dynamics of reaction-diffusion systems and applications
    Pao, CV
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3371 - 3377
  • [7] Slow dynamics in reaction-diffusion systems
    Strani, Marta
    ASYMPTOTIC ANALYSIS, 2016, 98 (1-2) : 131 - 154
  • [8] Dynamics of reaction-diffusion systems and applications
    Pao, C.V.
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (06): : 3371 - 3377
  • [9] REACTION-DIFFUSION DYNAMICS IN INHOMOGENEOUS SYSTEMS
    OHTSUKI, T
    KEYES, T
    JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (10): : 6060 - 6065
  • [10] Fronts and pattern formation in reaction-diffusion systems
    Droz, M
    ANOMALOUS DIFFUSION: FROM BASICS TO APPLICATIONS, 1999, 519 : 211 - 220