A note on exponentially harmonic morphisms

被引:2
|
作者
Loubeau, E
Montaldo, S
机构
[1] Univ Bretagne Occidentale, UFR Sci & Tech, Dept Math, F-29285 Brest, France
[2] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
关键词
D O I
10.1017/S0017089500010041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that exponentially harmonic morphisms are precisely the Riemannian submersions with minimal fibres.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 50 条
  • [1] Harmonic maps and harmonic morphisms
    J. C. Wood
    Journal of Mathematical Sciences, 1999, 94 (2) : 1263 - 1269
  • [2] MULTIVALUED HARMONIC MORPHISMS
    GUDMUNDSSON, S
    WOOD, JC
    MATHEMATICA SCANDINAVICA, 1993, 73 (01) : 127 - 155
  • [3] On holomorphic harmonic morphisms
    Svensson, MT
    MANUSCRIPTA MATHEMATICA, 2002, 107 (01) : 1 - 13
  • [4] Pseudo harmonic morphisms
    Loubeau, E
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (07) : 943 - 957
  • [5] SUBELLIPTIC HARMONIC MORPHISMS
    Dragomir, Sorin
    Lanconelli, Ermanno
    OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (02) : 411 - 440
  • [6] On holomorphic harmonic morphisms
    Martin Svensson
    manuscripta mathematica, 2002, 107 : 1 - 13
  • [7] On submersive harmonic morphisms
    Pantilie, R
    HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 23 - 29
  • [8] On the stability of harmonic morphisms
    Montaldo, S
    HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 31 - 38
  • [9] The beginnings of harmonic morphisms
    Fuglede, B
    HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 3 - 12
  • [10] STOCHASTIC HARMONIC MORPHISMS
    CSINK, L
    OKSENDAL, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (05): : T401 - T402