No-Arbitrage ROM simulation

被引:6
|
作者
Geyer, Alois [1 ,2 ]
Hanke, Michael [3 ]
Weissensteiner, Alex [4 ,5 ]
机构
[1] WU Vienna Univ Econ & Business, Vienna, Austria
[2] Vienna Grad Sch Finance, Vienna, Austria
[3] Univ Liechtenstein, Inst Financial Serv, FL-9490 Vaduz, Liechtenstein
[4] Tech Univ Denmark, Dept Engn Management, Lyngby, Denmark
[5] Free Univ Bolzano, Sch Econ & Management, Bolzano, Italy
来源
关键词
Financial scenario generation; ROM simulation; No-arbitrage bounds; Simplex; Rotation matrix;
D O I
10.1016/j.jedc.2014.05.017
中图分类号
F [经济];
学科分类号
02 ;
摘要
Ledermann et al. (2011) propose random orthogonal matrix (ROM) simulation for generating multivariate samples matching means and covariances exactly. Its computational efficiency compared to standard Monte Carlo methods makes it an interesting alternative. In this paper we enhance this method's attractiveness by focusing on applications in finance. Many financial applications require simulated asset returns to be free of arbitrage opportunities. We analytically derive no-arbitrage bounds for expected excess returns to be used in the context of ROM simulation, and we establish the theoretical relation between the number of states (i.e., the sample size) and the size of (no-)arbitrage regions. Based on these results, we present a No-Arbitrage ROM simulation algorithm, which generates arbitrage-free random samples by purposefully rotating a simplex. Hence, the proposed algorithm completely avoids any need for checking samples for arbitrage. Compared to the alternative of (potentially frequent) re-sampling followed by arbitrage checks, it is considerably more efficient As a by-product, we provide interesting geometrical insights into affine transformations associated with the No-Arbitrage ROM simulation algorithm. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 79
页数:14
相关论文
共 50 条
  • [1] No-arbitrage SABR
    Doust, Paul
    JOURNAL OF COMPUTATIONAL FINANCE, 2012, 15 (03) : 3 - 31
  • [2] No-Arbitrage Symmetries
    Iván Degano
    Sebastián Ferrando
    Alfredo González
    Acta Mathematica Scientia, 2022, 42 : 1373 - 1402
  • [3] NO-ARBITRAGE SYMMETRIES
    Iván DEGANO
    Sebastián FERRANDO
    Alfredo GONZáLEZ
    ActaMathematicaScientia, 2022, 42 (04) : 1373 - 1402
  • [4] No-Arbitrage Symmetries
    Degano, Ivan
    Ferrando, Sebastian
    Gonzalez, Alfredo
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1373 - 1402
  • [5] Narrowing the no-arbitrage bounds
    Chambers, Robert G.
    Quiggin, John
    JOURNAL OF MATHEMATICAL ECONOMICS, 2008, 44 (01) : 1 - 14
  • [6] A comparison of two no-arbitrage conditions
    Wang, Miao
    Wu, Jiang-Lun
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (04) : 929 - 946
  • [7] A NOTE ON THE EFFECT OF NO-ARBITRAGE CONDITIONS
    LIEN, DHD
    JOURNAL OF FUTURES MARKETS, 1992, 12 (05) : 587 - 593
  • [8] A teachers' note on no-arbitrage criteria
    Kabanov, Y
    Stricker, C
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 149 - 152
  • [9] Remarks on the true no-arbitrage property
    Kabanov, Y
    Stricker, C
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 186 - 194
  • [10] Estimating discrete dividends by no-arbitrage
    Desmettre, Sascha
    Gruen, Sarah
    Seifried, Frank Thomas
    QUANTITATIVE FINANCE, 2017, 17 (02) : 261 - 274