Fault tolerance of hypercubes and folded hypercubes

被引:16
|
作者
Guo, Litao [1 ,2 ]
Guo, Xiaofeng [2 ]
机构
[1] Xiamen Univ Technol, Dept Math, Xiamen 361024, Fujian, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2014年 / 68卷 / 03期
关键词
Interconnection networks; Fault-tolerance; Conditional edge connectivity; Edge extraconnectivity; RESTRICTED-EDGE-CONNECTIVITY; RELIABILITY; ALGORITHMS;
D O I
10.1007/s11227-013-1078-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Let G = (V, E) be a connected graph. The conditional edge connectivity is the cardinality of the minimum edge cuts, if any, whose deletion disconnects and each component of has . We assume that is an edge set, is called edge extra-cut, if is not connected and each component of has more than vertices. The edge extraconnectivity is the cardinality of the minimum edge extra-cuts. In this paper, we study the conditional edge connectivity and edge extraconnectivity of hypercubes and folded hypercubes.
引用
收藏
页码:1235 / 1240
页数:6
相关论文
共 50 条
  • [1] Fault tolerance of hypercubes and folded hypercubes
    Litao Guo
    Xiaofeng Guo
    The Journal of Supercomputing, 2014, 68 : 1235 - 1240
  • [2] Structure fault tolerance of hypercubes and folded hypercubes
    Sabir, Eminjan
    Meng, Jixiang
    THEORETICAL COMPUTER SCIENCE, 2018, 711 : 44 - 55
  • [3] Edge-fault-tolerant properties of hypercubes and folded hypercubes and folded hypercubes
    Xu, Jun-Ming
    Ma, Meijie
    Du, Zhengzhong
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 7 - 16
  • [4] Subgraph fault tolerance of distance optimally edge connected hypercubes and folded hypercubes
    Guo, Litao
    Qin, Chengfu
    Xu, Liqiong
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2020, 138 : 190 - 198
  • [5] ON FOLDED HYPERCUBES
    LATIFI, S
    ELAMAWY, A
    PROCEEDINGS OF THE 1989 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, VOL 1: ARCHITECTURE, 1989, : I180 - I187
  • [6] Structure fault tolerance of balanced hypercubes
    Liu, Heqin
    Cheng, Dongqin
    THEORETICAL COMPUTER SCIENCE, 2020, 845 : 198 - 207
  • [7] SUBCUBE FAULT-TOLERANCE IN HYPERCUBES
    GRAHAM, N
    HARARY, F
    LIVINGSTON, M
    STOUT, QF
    INFORMATION AND COMPUTATION, 1993, 102 (02) : 280 - 314
  • [8] Structure fault tolerance of balanced hypercubes
    Yuxing Yang
    Xiaohui Li
    Jing Li
    The Journal of Supercomputing, 2021, 77 : 3885 - 3898
  • [9] On fault tolerance of hypercubes using subcubes
    Sasama, Toshihiko
    Masuyama, Hiroshi
    Ichimori, Tetsuo
    International Journal of Reliability, Quality and Safety Engineering, 2002, 9 (02) : 151 - 161
  • [10] Structure fault tolerance of balanced hypercubes
    Yang, Yuxing
    Li, Xiaohui
    Li, Jing
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (04): : 3885 - 3898