Turbulent impurity transport simulations in Wendelstein 7-X plasmas

被引:24
|
作者
Garcia-Regana, J. M. [1 ]
Barnes, M. [2 ]
Calvo, I. [1 ]
Parra, F. I. [2 ]
Alcuson, J. A. [3 ]
Davies, R. [4 ]
Gonzalez-Jerez, A. [1 ]
Mollen, A. [5 ]
Sanchez, E. [1 ]
Velasco, J. L. [1 ]
Zocco, A. [3 ]
机构
[1] CIEMAT, Lab Nacl Fus, Ave Complutense, Madrid 28040, Spain
[2] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[3] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany
[4] Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England
[5] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
基金
英国工程与自然科学研究理事会;
关键词
plasma simulation; fusion plasma; plasma confinement; CODE;
D O I
10.1017/S0022377820001543
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A study of turbulent impurity transport by means of quasilinear and nonlinear gyrokinetic simulations is presented for Wendelstein 7-X (W7-X). The calculations have been carried out with the recently developed gyrokinetic code stella. Different impurity species are considered in the presence of various types of background instabilities: ion temperature gradient (ITG), trapped electron mode (TEM) and electron temperature gradient (ETG) modes for the quasilinear part of the work; ITG and TEM for the nonlinear results. While the quasilinear approach allows one to draw qualitative conclusions about the sign or relative importance of the various contributions to the flux, the nonlinear simulations quantitatively determine the size of the turbulent flux and check the extent to which the quasilinear conclusions hold. Although the bulk of the nonlinear simulations are performed at trace impurity concentration, nonlinear simulations are also carried out at realistic effective charge values, in order to know to what degree the conclusions based on the simulations performed for trace impurities can be extrapolated to realistic impurity concentrations. The presented results conclude that the turbulent radial impurity transport in W7-X is mainly dominated by ordinary diffusion, which is close to that measured during the recent W7-X experimental campaigns. It is also confirmed that thermodiffusion adds a weak inward flux contribution and that, in the absence of impurity temperature and density gradients, ITG- and TEM-driven turbulence push the impurities inwards and outwards, respectively.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Impact of the temperature ratio on turbulent impurity transport in Wendelstein 7-X
    Wegner, Th.
    Alcuson, J. A.
    Geiger, B.
    Stechow, A. v.
    Xanthopoulos, P.
    Angioni, C.
    Beurskens, M. N. A.
    Boettger, L. -G.
    Bozhenkov, S. A.
    Brunner, K. J.
    Burhenn, R.
    Buttenschoen, B.
    Damm, H.
    Edlund, E.
    Ford, O. P.
    Fuchert, G.
    Grulke, O.
    Huang, Z.
    Knauer, J.
    Kunkel, F.
    Langenberg, A.
    Pablant, N. A.
    Pasch, E.
    Rahbarnia, K.
    Schilling, J.
    Thomsen, H.
    Vano, L.
    NUCLEAR FUSION, 2020, 60 (12)
  • [2] Core radial electric field and transport in Wendelstein 7-X plasmas
    Pablant, N. A.
    Langenberg, A.
    Alonso, A.
    Beidler, C. D.
    Bitter, M.
    Bozhenkov, S.
    Burhenn, R.
    Beurskens, M.
    Delgado-Aparicio, L.
    Dinklage, A.
    Fuchert, G.
    Gates, D.
    Geiger, J.
    Hill, K. W.
    Hoefel, U.
    Hirsch, M.
    Knauer, J.
    Kraemer-Flecken, A.
    Landreman, M.
    Lazerson, S.
    Maassberg, H.
    Marchuk, O.
    Massidda, S.
    Neilson, G. H.
    Pasch, E.
    Satake, S.
    Svennson, J.
    Traverso, P.
    Turkin, Y.
    Valson, P.
    Velasco, J. L.
    Weir, G.
    Windisch, T.
    Wolf, R. C.
    Yokoyama, M.
    Zhang, D.
    PHYSICS OF PLASMAS, 2018, 25 (02)
  • [3] Confinement in electron heated plasmas in Wendelstein 7-X and ASDEX Upgrade; the necessity to control turbulent transport
    Beurskens, M. N. A.
    Angioni, C.
    Bozhenkov, S. A.
    Ford, O.
    Kiefer, C.
    Xanthopoulos, P.
    Turkin, Y.
    Alcuson, J. A.
    Baehner, J. P.
    Beidler, C.
    Birkenmeier, G.
    Fable, E.
    Fuchert, G.
    Geiger, B.
    Grulke, O.
    Hirsch, M.
    Jakubowski, M.
    Laqua, H. P.
    Langenberg, A.
    Lazerson, S.
    Pablant, N.
    Reisner, M.
    Schneider, P.
    Scott, E. R.
    Stange, T.
    von Stechow, A.
    Stober, J.
    Stroth, U.
    Wegner, Th
    Weir, G.
    Zhang, D.
    Zocco, A.
    Wolf, R. C.
    Zohm, H.
    NUCLEAR FUSION, 2022, 62 (01)
  • [4] Confinement in electron heated plasmas in Wendelstein 7-X and ASDEX Upgrade; The necessity to control turbulent transport
    Beurskens, M.N.A.
    Angioni, C.
    Bozhenkov, S.A.
    Ford, O.
    Kiefer, C.
    Xanthopoulos, P.
    Turkin, Y.
    Alcusón, J.A.
    Baehner, J.P.
    Beidler, C.
    Birkenmeier, G.
    Fable, E.
    Fuchert, G.
    Geiger, B.
    Grulke, O.
    Hirsch, M.
    Jakubowski, M.
    Laqua, H.P.
    Langenberg, A.
    Lazerson, S.
    Pablant, N.
    Reisner, M.
    Schneider, P.
    Scott, E.R.
    Stange, T.
    Von Stechow, A.
    Stober, J.
    Stroth, U.
    Wegner, Th.
    Weir, G.
    Zhang, D.
    Zocco, A.
    Wolf, R.C.
    Zohm, H.
    Nuclear Fusion, 2022, 62 (01):
  • [5] Confinement in Wendelstein 7-X limiter plasmas
    Hirsch, M.
    Dinklage, A.
    Alonso, A.
    Fuchert, G.
    Bozhenkov, S.
    Hoefel, U.
    Andreeva, T.
    Baldzuhn, J.
    Beurskens, M.
    Bosch, H. -S.
    Beidler, C. D.
    Biedermann, C.
    Blanco, E.
    Brakel, R.
    Burhenn, R.
    Buttenschoen, B.
    Cappa, A.
    Czarnecka, A.
    Endler, M.
    Estrada, T.
    Fornal, T.
    Geiger, J.
    Grulke, O.
    Harris, J. H.
    Hartmann, D.
    Jakubowski, M.
    Klinger, T.
    Knauer, J.
    Kocsis, G.
    Koenig, R.
    Kornejew, P.
    Kraemer-Flecken, A.
    Krawczyk, N.
    Krychowiak, M.
    Kubkowska, M.
    Ksiazek, I.
    Langenberg, A.
    Laqua, H. P.
    Lazerson, S.
    Maassberg, H.
    Marushchenko, N.
    Marsen, S.
    Moncada, V.
    Moseev, D.
    Naujoks, D.
    Otte, M.
    Pablant, N.
    Pasch, E.
    Pisano, F.
    Rahbarnia, K.
    NUCLEAR FUSION, 2017, 57 (08)
  • [6] On the role of density fluctuations in the core turbulent transport of Wendelstein 7-X
    Carralero, D.
    Estrada, T.
    Maragkoudakis, E.
    Windisch, T.
    Alonso, J. A.
    Velasco, J. L.
    Ford, O.
    Jakubowski, M.
    Lazerson, S.
    Beurskens, M.
    Bozhenkov, S.
    Calvo, I
    Damm, H.
    Fuchert, G.
    Garcia-Regana, J. M.
    Hoefel, U.
    Marushchenko, N.
    Pablant, N.
    Sanchez, E.
    Smith, H. M.
    Pasch, E.
    Stange, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (04)
  • [7] Turbulent transport in the scrape-off layer of Wendelstein 7-X
    Killer, Carsten
    Narbutt, Yann
    Grulke, Olaf
    NUCLEAR FUSION, 2021, 61 (09)
  • [8] Overview of core impurity transport in the first divertor operation of Wendelstein 7-X
    Wegner, Th
    Baehner, J. -P.
    Buttenschoen, B.
    Langenberg, A.
    von Stechow, A.
    JOURNAL OF PLASMA PHYSICS, 2023, 89 (03)
  • [9] Performance and properties of the first plasmas of Wendelstein 7-X
    Klinger, T.
    Alonso, A.
    Bozhenkov, S.
    Burhenn, R.
    Dinklage, A.
    Fuchert, G.
    Geiger, J.
    Grulke, O.
    Langenberg, A.
    Hirsch, M.
    Kocsis, G.
    Knauer, J.
    Kraemer-Flecken, A.
    Laqua, H.
    Lazerson, S.
    Landreman, M.
    Maassberg, H.
    Marsen, S.
    Otte, M.
    Pablant, N.
    Pasch, E.
    Rahbarnia, K.
    Stange, T.
    Szepesi, T.
    Thomsen, H.
    Traverso, P.
    Velasco, J. L.
    Wauters, T.
    Weir, G.
    Windisch, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
  • [10] Quantitative comparison of impurity transport in turbulence reduced and enhanced scenarios at Wendelstein 7-X
    Alcuson, J. A.
    Wegner, Th.
    Dinklage, A.
    Langenberg, A.
    Bahner, J. -P.
    Buttenschoen, B.
    Edlund, E. M.
    Fuchert, G.
    Garcia-Regana, J. M.
    Grulke, O.
    Huang, Z.
    Porkolab, M.
    Stechow, A. V.
    Xanthopoulos, P.
    Zocco, A.
    NUCLEAR FUSION, 2023, 63 (09)