CLIFFORD SYSTEMS, HARMONIC MAPS AND METRICS WITH NONNEGATIVE CURVATURE

被引:0
|
作者
Qian, Chao [1 ]
Tang, Zizhou [2 ,3 ]
Yan, Wenjiao [4 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
[2] Nankai Univ, Chern Inst Math, Beijing, Peoples R China
[3] Nankai Univ, LPMC, Beijing, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, Beijing, Peoples R China
关键词
isoparametric hypersurface; focal submanifold; Clifford system; characteristic map; harmonic map; nonnegative sectional curvature; 4 PRINCIPAL CURVATURES; ISOPARAMETRIC HYPERSURFACES; MAPPINGS;
D O I
10.2140/pjm.2022.320.391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Associated with a symmetric Clifford system {P-0, P-1,..., P-m} on R-2l, there is a canonical vector bundle eta over Sl-1. For m = 4 and 8, we construct explicitly its characteristic map, and determine completely when the sphere bundle S(eta) associated to eta admits a cross-section. These generalize the results of Steenrod (1951) and James (1958). As an application, we establish new harmonic representatives of certain elements in homotopy groups of spheres (see [Peng and Tang 1997; 1998]). By a suitable choice of Clifford system, we construct a metric of nonnegative curvature on S(eta) which is diffeomorphic to the inhomogeneous focal submanifold M+ of OT-FKM type isoparametric hypersurfaces with m = 3.
引用
收藏
页码:391 / 424
页数:34
相关论文
共 50 条
  • [1] CLIFFORD SYSTEMS, HARMONIC MAPS AND METRICS WITH NON-NEGATIVE CURVATURE
    Qian, Chao
    Tang, Zizhou
    Yan, Wenjiao
    arXiv, 2022,
  • [2] HARMONIC MAPS AND TOPOLOGY OF STABLE HYPERSURFACES AND MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE
    SCHOEN, R
    YAU, ST
    COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (03) : 333 - 341
  • [3] Homogeneous Metrics with Nonnegative Curvature
    Schwachhoefer, Lorenz
    Tapp, Kristopher
    JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (04) : 929 - 943
  • [4] Homogeneous Metrics with Nonnegative Curvature
    Lorenz Schwachhöfer
    Kristopher Tapp
    Journal of Geometric Analysis, 2009, 19 : 929 - 943
  • [5] METRICS WITH NONNEGATIVE ISOTROPIC CURVATURE
    MICALLEF, MJ
    WANG, MY
    DUKE MATHEMATICAL JOURNAL, 1993, 72 (03) : 649 - 672
  • [6] CONFORMALLY PLANE METRICS OF NONNEGATIVE CURVATURE
    SLAVSKII, VV
    SIBERIAN MATHEMATICAL JOURNAL, 1989, 30 (05) : 811 - 823
  • [7] On the moduli spaces of metrics with nonnegative sectional curvature
    Goodman, McFeely Jackson
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 57 (02) : 305 - 320
  • [8] On the fill-in of nonnegative scalar curvature metrics
    Yuguang Shi
    Wenlong Wang
    Guodong Wei
    Jintian Zhu
    Mathematische Annalen, 2021, 379 : 235 - 270
  • [9] RIEMANNIAN METRICS OF NONNEGATIVE CURVATURE ON FIBER BUNDLES
    WALCZAK, PG
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (11): : 987 - 991
  • [10] On the fill-in of nonnegative scalar curvature metrics
    Shi, Yuguang
    Wang, Wenlong
    Wei, Guodong
    Zhu, Jintian
    MATHEMATISCHE ANNALEN, 2021, 379 (1-2) : 235 - 270