Reversible structural transition in monocrystalline Ni2FeGa microwires for shape-memory applications

被引:4
|
作者
Frolova, L. [1 ]
Ryba, T. [2 ]
Gamcova, J. [3 ,4 ]
Milkovic, O. [3 ,5 ]
Diko, P. [5 ]
Kavecansky, V. [5 ]
Kravcak, J. [6 ]
Vargova, Z. [7 ]
Varga, R. [1 ,2 ]
机构
[1] UPJS, CPM TIP, Kosice 04154, Slovakia
[2] RVmagnetics, Hodkovce 21, Hodkovce 04421, Slovakia
[3] Slovak Acad Sci, Inst Mat Res, Watsonova 47, Kosice 04001, Slovakia
[4] Tech Univ Kosice, Inst Mat & Qual Engn, Fac Mat Met & Recycling, Letna 9, Kosice 04200, Slovakia
[5] Slovak Acad Sci, Inst Expt Phys, Watsonova 47, Kosice 04001, Slovakia
[6] Tech Univ Kosice, Dept Phys, FEEI, Pk Komenskeho 2, Kosice 04200, Slovakia
[7] UPJS, Dept Inorgan Chem, Fac Sci, Moyzesova 11, Kosice 04154, Slovakia
关键词
Shape-memory alloys; Glass-coated microwires; Monocrystalline structure; SMART actuators; MAGNETIC-BEHAVIOR; TRANSFORMATIONS; DESIGN; GIANT;
D O I
10.1016/j.mseb.2020.114891
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the production and characterization of Heusler-based Ni2FeGa microwires exhibiting two - way shape memory effect. The microwires are characterized by a monocrystalline structure with a strong preferred crystallographic orientation that shows [1 1 1] axis parallel to the wire's axis for high-temperature L2(1) austenite phase, while the [0 1 7] axis is preferred for low-temperature monoclinic phase. Variation of crystallographic axis (and corresponding easy magnetization axis) leads to 1600% variation of magnetic permeability due to a 2% strain in axial direction. Such straining is reversible immediately after production without the necessity of further thermal treatment. These properties give the microwire function of very sensitive SMART actuators that can be easily produced in a large amount.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Smart Shape Memory Actuator Based on Monocrystalline Ni2FeGa Glass-Coated Microwire
    Frolova, Lucia
    Ryba, Tomas
    Diko, Pavel
    Kavecansky, Viktor
    Milkovic, Ondrej
    Dzubinska, Andrea
    Reiffers, Marian
    Vargova, Zuzana
    Varga, Rastislav
    IEEE TRANSACTIONS ON MAGNETICS, 2018, 54 (11)
  • [2] Smart Shape Memory Actuator based on Monocrystalline Ni2FeGa glass-coded microwire
    Frolova, L.
    Ryba, T.
    Diko, P.
    Kavecansky, V.
    Kravcak, J.
    Vargova, Z.
    Varga, R.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [3] Martensitic transition and structural modulations in the Heusler alloy Ni2FeGa
    Li, JQ
    Liu, ZH
    Yu, HC
    Zhang, M
    Zhou, YQ
    Wu, GH
    SOLID STATE COMMUNICATIONS, 2003, 126 (06) : 323 - 327
  • [4] Premartensite transition in Ni2FeGa Heusler alloy
    Nath, Hrusikesh
    Phanikumar, G.
    MATERIALS CHARACTERIZATION, 2015, 102 : 24 - 28
  • [5] Transition temperature tuning of Ni2FeGa based Heusler alloys in form of glass-coated microwires
    Hennel, M.
    Galdun, L.
    Ryba, T.
    Varga, R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 511
  • [6] Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa
    Liu, ZH
    Zhang, M
    Cui, YT
    Zhou, YQ
    Wang, WH
    Wu, GH
    Zhang, XX
    Xiao, G
    APPLIED PHYSICS LETTERS, 2003, 82 (03) : 424 - 426
  • [7] Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa
    Pataky, Garrett J.
    Ertekin, Elif
    Sehitoglu, Huseyin
    DATA IN BRIEF, 2015, 5 : 7 - 8
  • [8] Magnetic and structural characterizations of Heusler Ni2FeGa nanoparticles
    Xu, Yunli
    Liu, Min
    Huang, Xiufeng
    Dai, Zhiwen
    Qiu, Hongmei
    Yu, Guanghua
    Pan, Liqing
    MATERIALS RESEARCH EXPRESS, 2016, 3 (11):
  • [9] Ab initio calculations of martensitic phase behavior in Ni2FeGa magnetic shape memory alloys
    Soykan, C.
    Kart, S. Ozdemir
    Sevik, C.
    Cagin, T.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 611 : 225 - 234
  • [10] Undercooling growth and magnetic characterization of ferromagnetic shape memory alloy Ni2FeGa single crystals
    Qian, J. F.
    Zhang, H. G.
    Chen, J. L.
    Wang, W. H.
    Wu, G. H.
    JOURNAL OF CRYSTAL GROWTH, 2014, 388 : 107 - 111