A simple approach of constructing sulfur-containing porous carbon nanotubes for high-performance supercapacitors

被引:54
|
作者
Liu, Wei [1 ,2 ]
Tang, Yakun [1 ,2 ]
Sun, Zhipeng [2 ]
Gao, Shasha [1 ,2 ]
Ma, Junhong [1 ]
Liu, Lang [1 ,2 ]
机构
[1] Xinjiang Univ, Sch Chem & Chem Engn, Xinjiang 830046, Peoples R China
[2] Xinjiang Univ, Inst Appl Chem, Key Lab Energy Mat Chem, Minist Educ, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
ORDERED MESOPOROUS CARBON; ENERGY-STORAGE; ACTIVATED CARBONS; SURFACE-AREA; CARBONIZATION; GRAPHENE; NITROGEN; FABRICATION; DENSITY;
D O I
10.1016/j.carbon.2017.01.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous carbon nanotubes (PCNTs) containing sulfur were successfully fabricated through a simple approach, which is the simultaneous activation and carbonization of sulfonated polydivinylbenzene nanotubes with KOH. The PCNTs take on hierarchical porous structure composed of well interconnected mesopores and numerous micropores. Chemical analysis shows that the PCNTs contain sulfide and sulfone groups. When assessed as electrodes by a three-electrode system in 6 M KOH aqueous solution, the PCNTs displayed the excellent electrochemical performance. An optimal sample of PCNTs activated at 650 degrees C for 3 h not only exhibits a high specific capacitance of 331 F g(-1) at 1 A g(-1), but also shows considerable rate capability with the retention of 80.4% at 20 A g(-1). Additionally, it has the good cycling performance with 84% capacitance retention, while a high capability of about 243 F g(-1) still reaches over 5000 cycles at 5 A g(-1). We presented a promising route to scale-up synthesize porous carbon nanotube elettrode materials for high-performance supercapacitors. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:754 / 762
页数:9
相关论文
共 50 条
  • [1] Simple synthesis of porous carbon materials for high-performance supercapacitors
    He-Ming Luo
    Hui Chen
    Yan-Zheng Chen
    Ping Li
    Jian-Qiang Zhang
    Xia Zhao
    Journal of Applied Electrochemistry, 2016, 46 : 703 - 712
  • [2] Simple synthesis of porous carbon materials for high-performance supercapacitors
    Luo, He-Ming
    Chen, Hui
    Chen, Yan-Zheng
    Li, Ping
    Zhang, Jian-Qiang
    Zhao, Xia
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (06) : 703 - 712
  • [3] Bamboo-like carbon nanotubes containing sulfur for high performance supercapacitors
    Yang, Yincong
    Liu, Lang
    Tang, Yakun
    Zhang, Yang
    Jia, Dianzeng
    Kong, Lingbing
    ELECTROCHIMICA ACTA, 2016, 191 : 846 - 853
  • [4] Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors
    Yang Lu
    Xianming Liu
    Weixiao Wang
    Jinbing Cheng
    Hailong Yan
    Chengchun Tang
    Jang-Kyo Kim
    Yongsong Luo
    Scientific Reports, 5
  • [5] Constructing polypyrrole/aligned carbon nanotubes composite materials as electrodes for high-performance supercapacitors
    Fang, Yan
    Jiang, Xiaohong
    Niu, Lihong
    Wang, Shujie
    MATERIALS LETTERS, 2017, 190 : 232 - 235
  • [6] Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors
    Lu, Yang
    Liu, Xianming
    Wang, Weixiao
    Cheng, Jinbing
    Yan, Hailong
    Tang, Chengchun
    Kim, Jang-Kyo
    Luo, Yongsong
    SCIENTIFIC REPORTS, 2015, 5
  • [7] Potassium chloride-catalyzed growth of porous carbon nanotubes for high-performance supercapacitors
    Lv, Song
    Ma, Liya
    Shen, Xinyu
    Tong, Hua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906
  • [8] Activated Porous Carbon Nanofibers for High-Performance Supercapacitors
    Islam, Moyinul
    Lu, Xing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (04): : 3856 - 3870
  • [9] Porous wood carbon monolith for high-performance supercapacitors
    Liu, Mao-Cheng
    Kong, Ling-Bin
    Zhang, Peng
    Luo, Yong-Chun
    Kang, Long
    ELECTROCHIMICA ACTA, 2012, 60 : 443 - 448
  • [10] Ulothrix-Derived Sulfur-Doped Porous Carbon for High-Performance Symmetric Supercapacitors
    Liu, Song
    Chen, Kun
    Wu, Qiang
    Gao, Yuanyuan
    Xue, Changguo
    Dong, Xiang
    ACS OMEGA, 2022, 7 (12): : 10137 - 10143