Error bounds of multi-graph regularized semi-supervised classification

被引:30
|
作者
Chen, Hong [1 ]
Li, Luoqing [1 ]
Peng, Jiangtao [2 ]
机构
[1] Hubei Univ, Fac Math & Comp Sci, Wuhan 430062, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Semi-supervised learning; Tikhonov regularization; Reproducing kernel Hilbert space; Rademacher complexity; Graph Laplacian;
D O I
10.1016/j.ins.2009.01.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the generalization performance of the multi-graph regularized semi-supervised classification algorithm associated with the hinge loss. We provide estimates for the excess misclassification error of multi-graph regularized classifiers and show the relations between the generalization performance and the structural invariants of data graphs. Experiments performed on real database demonstrate the effectiveness of our theoretical analysis. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1960 / 1969
页数:10
相关论文
共 50 条
  • [1] Manifold-based multi-graph embedding for semi-supervised classification
    Hu, Cong
    Song, Jiang-Tao
    Chen, Jia-Sheng
    Wang, Rui
    Wu, Xiao-Jun
    PATTERN RECOGNITION LETTERS, 2024, 182 : 53 - 59
  • [2] Semi-supervised manifold alignment with multi-graph embedding
    Huang Chang-Bin
    Abeo, Timothy Apasiba
    Luo Xiao-Zhen
    Shen Xiang-Jun
    Gou Jian-Ping
    Niu De-Jiao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (27-28) : 20241 - 20262
  • [3] Semi-supervised manifold alignment with multi-graph embedding
    Chang-Bin Huang
    Timothy Apasiba Abeo
    Xiao-Zhen Luo
    Xiang-Jun Shen
    Jian-Ping Gou
    De-Jiao Niu
    Multimedia Tools and Applications, 2020, 79 : 20241 - 20262
  • [4] Contrastive multi-graph learning with neighbor hierarchical sifting for semi-supervised text classification
    Ai, Wei
    Li, Jianbin
    Wang, Ze
    Wei, Yingying
    Meng, Tao
    Li, Keqin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 266
  • [5] Semi-supervised multi-graph hashing for scalable similarity search
    Cheng, Jian
    Leng, Cong
    Li, Peng
    Wang, Meng
    Lu, Hanging
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 124 : 12 - 21
  • [6] Multi-Graph Based Semi-Supervised Learning for Activity Recognition
    Stikic, Maja
    Larlus, Diane
    Schiele, Bernt
    2009 INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, PROCEEDINGS, 2009, : 85 - 92
  • [7] Semi-supervised multi-graph classification using optimal feature selection and extreme learning machine
    Pang, Jun
    Gu, Yu
    Xu, Jia
    Yu, Ge
    NEUROCOMPUTING, 2018, 277 : 89 - 100
  • [8] Feature extraction of hyperspectral image with semi-supervised multi-graph embedding
    Huang H.
    Tang Y.-X.
    Duan Y.-L.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2020, 28 (02): : 443 - 456
  • [9] Multi-graph semi-supervised learning for video semantic feature extraction
    Wang, Meng
    Hua, Xian-Sheng
    Yuan, Xun
    Song, Yan
    Dai, Li-Rong
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 1978 - +
  • [10] Regularized semi-supervised classification on manifold
    Zhao, LW
    Luo, SW
    Zhao, YC
    Liao, LZ
    Wang, ZH
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 20 - 29