Generalized Benders Decomposition Based Dynamic Optimal Power Flow Considering Discrete and Continuous Decision Variables

被引:5
|
作者
Liu, Bo [1 ]
Li, Jiang [1 ]
Ma, Haotian [1 ]
Liu, Yiying [2 ]
机构
[1] Northeast Elect Power Univ, Sch Elect Engn, Jilin 132012, Jilin, Peoples R China
[2] State Grid Jilin Power Supply Co, Jilin 132012, Jilin, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Reactive power; Generators; Load flow; Linear programming; Heuristic algorithms; Wind power generation; Optimization; DOPF model; wind power integration; discrete and continuous variables; GBD algorithm; INCORPORATING STOCHASTIC WIND; ALGORITHM; OPTIMIZATION;
D O I
10.1109/ACCESS.2020.3033224
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dynamic optimal power flow (DOPF) is a mixed-integer nonlinear programming problem. This article builds a DOPF model with discrete and continuous variables, and then proposes the iterative method based on the master and sub-problems obtained from the generalized Benders decomposition (GBD). Firstly, the power output of conventional generators and the reactive power of the wind farm are modeled as the continuous decision variables, and the transformer taps ratio is built as a discrete decision variable. Secondly, the objective function is to minimize the total power generation cost and network loss. Thirdly, the DOPF problem is decomposed into the master problem and sub-problems by fixing a complex variable, which reduces the complexity of DOPF. Then, the proposed algorithm is used to solve the master and sub-problems. Finally, simulation results show that the proposed method has advantages in terms of reducing computational time and enhancing accuracy.
引用
收藏
页码:194260 / 194268
页数:9
相关论文
共 50 条
  • [1] Microgrid Optimal Power Flow Using the Generalized Benders Decomposition Approach
    Jamalzadeh, Reza
    Hong, Mingguo
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10 (04) : 2050 - 2064
  • [2] Probabilistic Power Flow Method Considering Continuous and Discrete Variables
    Zhang, Xuexia
    Guo, Zhiqi
    Chen, Weirong
    ENERGIES, 2017, 10 (05):
  • [3] Dynamic optimal power flow using interior point method and benders decomposition considering active and reactive constraints
    Yamin, H. Y.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2006, 34 (12) : 1377 - 1393
  • [4] Multiperiod optimal power flow using benders decomposition
    Alguacil, N
    Conejo, AJ
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (01) : 196 - 201
  • [5] New approach for dynamic optimal power flow using Benders decomposition in a deregulated power market
    Yamin, HY
    Al-Tallaq, K
    Shahidehpour, SM
    ELECTRIC POWER SYSTEMS RESEARCH, 2003, 65 (02) : 101 - 107
  • [6] Distribution network management based on optimal power flow: integration of discrete decision variables
    Briglia, Enrique
    Alaggia, Sebastian
    Paganini, Fernando
    2017 51ST ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2017,
  • [7] Geometric programming with several discrete variables: Algorithms employing generalized benders' decomposition
    Choi, JC
    Bricker, DL
    ENGINEERING OPTIMIZATION, 1995, 25 (03) : 201 - 212
  • [8] Geometric programming with several discrete variables: algorithms employing generalized benders' decomposition
    Choi, Jae Chul
    Bricker, Dennis L.
    Engineering Optimization, 1600, 25 (03):
  • [9] A Comparative Study of Benders Decomposition and ADMM for Decentralized Optimal Power Flow
    Candas, Soner
    Zhang, Kai
    Hamacher, Thomas
    2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2020,
  • [10] A heuristic benders-decomposition-based algorithm for transient stability constrained optimal power flow
    Saberi, Hossein
    Amraee, Turaj
    Zhang, Cuo
    Dong, Zhao Yang
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 185