Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems

被引:141
|
作者
Flick, Johannes [1 ,2 ]
Appel, Heiko [1 ,2 ]
Ruggenthaler, Michael [1 ,2 ]
Rubio, Angel [1 ,2 ,3 ,4 ]
机构
[1] Max Planck Inst Struct & Dynam Matter, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Ctr Free Electron Laser Sci, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] Univ Basque Country, Dept Fis Mat, Nanobio Spect Grp, San Sebastian 20018, Spain
[4] Univ Basque Country, Dept Fis Mat, ETSF, San Sebastian 20018, Spain
基金
奥地利科学基金会; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
ROOM-TEMPERATURE;
D O I
10.1021/acs.jctc.6b01126
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we illustrate the recently introduced concept of the cavity Born-Oppenheimer approximation [Flick et al. PNAS 2017, 10.1073/pnas.1615509114] for correlated electron-nuclear-photon problems in detail. We demonstrate how an expansion in terms of conditional electronic and photon-nuclear wave functions accurately describes eigenstates of strongly correlated light-matter systems. For a GaAs quantum ring model in resonance with a photon mode we highlight how the ground-state electronic potential-energy surface changes the usual harmonic potential of the free photon mode to a dressed mode with a double-well structure. This change is accompanied by a splitting of the electronic ground-state density. For a model where the photon mode is in resonance with a vibrational transition, we observe in the excited-state electronic potential-energy surface a splitting from a single minimum to a double minimum. Furthermore, for a time-dependent setup, we show how the dynamics in correlated light-matter systems can be understood in terms of population transfer between potential energy surfaces. This work at the interface of quantum chemistry and quantum optics paves the way for the full ab initio description of matter-photon systems.
引用
收藏
页码:1616 / 1625
页数:10
相关论文
共 50 条
  • [1] Understanding the cavity Born-Oppenheimer approximation
    Fiechter, Marit R.
    Richardson, Jeremy O.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (18):
  • [2] Nuclear Rotations and the Born-Oppenheimer Approximation
    Zettili, Nouredine
    PROCEEDINGS OF THE FIFTH SAUDI PHYSICAL SOCIETY CONFERENCE (SPS5), 2011, 1370
  • [3] Comparison of Born-Oppenheimer approximation and electron-nuclear correlation
    Stetzler, Julian
    Rassolov, Vitaly A.
    MOLECULAR PHYSICS, 2023, 121 (9-10)
  • [4] Born-Oppenheimer approximation in open systems
    Huang, X. L.
    Yi, X. X.
    PHYSICAL REVIEW A, 2009, 80 (03)
  • [5] NUCLEAR COLLECTIVE MOTION AND THE BORN-OPPENHEIMER APPROXIMATION
    VILLARS, FMH
    NUCLEAR PHYSICS A, 1984, 420 (01) : 61 - 82
  • [6] ADIABATIC BORN-OPPENHEIMER APPROXIMATION
    SCHUTTE, CJH
    QUARTERLY REVIEWS, 1971, 25 (03): : 393 - &
  • [7] RESONANCES IN THE BORN-OPPENHEIMER APPROXIMATION
    MARTINEZ, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) : 204 - 234
  • [8] VALIDITY OF THE BORN-OPPENHEIMER APPROXIMATION
    BLUDMAN, S
    DAITCH, PB
    PHYSICAL REVIEW, 1954, 95 (03): : 823 - 830
  • [9] Tetraquarks in the Born-Oppenheimer approximation
    Germani, D.
    Grinstein, B.
    Polosa, A. D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (04):
  • [10] Entanglement in the Born-Oppenheimer Approximation
    Izmaylov, Artur F.
    Franco, Ignacio
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (01) : 20 - 28