New Sets of Even-Length Binary Z-Complementary Pairs With Asymptotic ZCZ Ratio of 3/4

被引:58
|
作者
Adhikary, Avik Ranjan [1 ]
Majhi, Sudhan [2 ]
Liu, Zilong [3 ]
Guan, Yong Liang [4 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Patna 801103, Bihar, India
[2] Indian Inst Technol Patna, Dept Elect Engn, Patna 801103, Bihar, India
[3] Univ Surrey, Innovat Ctr 5G, Inst Commun Syst, Guildford GU2 7XH, Surrey, England
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Even-length binary aperiodic Z-Complementary Pairs (EB-ZCPs); Golay complementary pair (GCP); zero correlation zone (ZCZ); Z-Complementary pair (ZCP); MEAN POWER-CONTROL; REED-MULLER CODES; SEQUENCES; OFDM;
D O I
10.1109/LSP.2018.2834143
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter is focused on increasing the zero correlation zone (ZCZ) of even-length binary Z-complementary pairs (EB-ZCPs). Till date, the maximum ZCZ ratio (i.e., ZCZ width over the sequence length) for systematically constructed EB-ZCPs is 2/3. In this letter, we give a construction of EB-ZCPs with lengths 2(alpha+2)10(beta)26(gamma) + 2 (where alpha, beta, and gamma are nonnegative integers) and ZCZ widths 3 x 2(alpha)10(beta)26(gamma) + 1, thus achieving asymptotic ZCZ ratio of 3/4. The proposed EB-ZCPs are constructed via proper insertion of concatenated odd-length binary ZCPs. The ZCZ width is proved by exploiting several newly identified intrinsic structure properties of binary Golay complementary pairs, obtained from Turyn's method. The proposed EB-ZCPs have aperiodic autocorrelation sums (AACS) magnitude of 4 outside the ZCZ region (except for the last time-shift taking AACS value of zero).
引用
收藏
页码:970 / 973
页数:4
相关论文
共 28 条
  • [1] New Sets of Even-Length Binary Z-Complementary Pairs
    Gu, Zhi
    Yang, Yang
    Zhou, Zhengchun
    2019 NINTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2019,
  • [2] New Construction of Even-Length Binary Z-Complementary Pairs with Low PAPR
    Gu, Zhi
    Wang, Yong
    Yang, Yang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (02) : 412 - 416
  • [3] A Direct Construction of Binary Even-length Z-complementary Pairs with Zero Correlation Zone Ratio of 6/7
    Peng, Xiuping
    Shen, Mingshuo
    Lin, Hongbin
    Wang, Shide
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08)
  • [4] A Direct Construction of Binary Even-Length Z-Complementary Pairs with Zero Correlation Zone Ratio of 6/7
    Peng, Xiuping
    Shen, Mingshuo
    Lin, Hongbin
    Wang, Shide
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105A (12) : 1612 - 1615
  • [5] Constructions of Even-Length Z-Complementary Pairs With Large Zero Correlation Zones
    Yu, Tao
    Du, Xiaoyong
    Li, Lanping
    Yang, Yang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 828 - 831
  • [6] New Construction of Z-Optimal Type-II Even-Length Quadriphase Z-Complementary Pairs
    Zeng, Fanxin
    He, Xiping
    Zhang, Zhenyu
    Yan, Li
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (03) : 450 - 453
  • [7] New Sets of Optimal Odd-Length Binary Z-Complementary Pairs
    Adhikary, Avik Ranjan
    Majhi, Sudhan
    Liu, Zilong
    Guan, Yong Liang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (01) : 669 - 678
  • [8] Construction of new even-length type-II Z-complementary pair
    Chen X.
    Sun L.
    Zhang J.
    Li Y.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (03): : 138 - 144
  • [9] New Sets of Binary Cross Z-Complementary Sequence Pairs
    Fan, Cuiling
    Zhang, Dingyan
    Adhikary, Avik Ranjan
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1616 - 1620
  • [10] New Binary Cross Z-Complementary Pairs With Large CZC Ratio
    Zhang, Hui
    Fan, Cuiling
    Yang, Yang
    Mesnager, Sihem
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (02) : 1328 - 1336