Non-Markovian Stochastic Epidemics in Extremely Heterogeneous Populations

被引:3
|
作者
House, T. [1 ]
机构
[1] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Zipf; Sellke; SIR; SCALE-FREE NETWORKS; DYNAMICS; TRANSMISSION; DISEASES;
D O I
10.1051/mmnp/20149210
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A feature often observed in epidemiological networks is significant heterogeneity in degree. A popular modelling approach to this has been to consider large populations with highly heterogeneous discrete contact rates. This paper defines an individual-level non-Markovian stochastic process that converges on standard ODE models of such populations in the appropriate asymptotic limit. A generalised Sellke construction is derived fir this model, and this is then used to consider final outcomes in the case where heterogeneity follows a truncated Zipf distribution.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 50 条
  • [1] Non-Markovian stochastic processes
    Gillespie, DT
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2000, 511 : 49 - 56
  • [2] Non-Markovian stochastic Liouville equation
    Shushin, AI
    Sakun, VP
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) : 283 - 291
  • [3] Stochastic Schrodinger Equations for Markovian and non-Markovian Cases
    Semina, I.
    Semin, V.
    Petruccione, F.
    Barchielli, A.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2):
  • [4] Stochastic Langevin equations: Markovian and non-Markovian dynamics
    Farias, R. L. S.
    Ramos, Rudnei O.
    da Silva, L. A.
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [5] Quantum non-Markovian Stochastic equations
    Adamian, GG
    Antonenko, NV
    Kanokov, Z
    Sargsyan, VV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 145 (01) : 1443 - 1456
  • [6] Non-Markovian stochastic Schrodinger equation
    Gaspard, P
    Nagaoka, M
    JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (13): : 5676 - 5690
  • [7] Non-Markovian stochastic evolution equations
    Costanza, G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 402 : 224 - 235
  • [8] Simulating non-Markovian stochastic processes
    Boguna, Marian
    Lafuerza, Luis F.
    Toral, Raul
    Angeles Serrano, M.
    PHYSICAL REVIEW E, 2014, 90 (04)
  • [9] Non-Markovian stochastic Schrodinger equations
    Gambetta, JM
    Wiseman, HM
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 303 - 306
  • [10] Quantum Non-Markovian Stochastic Equations
    G. G. Adamian
    N. V. Antonenko
    Z. Kanokov
    V. V. Sargsyan
    Theoretical and Mathematical Physics, 2005, 145 : 1443 - 1456