No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data

被引:0
|
作者
Luo, Mi [1 ]
Chen, Fei [2 ]
Hu, Dapeng [1 ]
Zhang, Yifan [1 ]
Liang, Jian [3 ]
Feng, Jiashi [1 ]
机构
[1] Natl Univ Singapore, Singapore, Singapore
[2] Huawei Noahs Ark Lab, Montreal, PQ, Canada
[3] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A central challenge in training classification models in the real-world federated system is learning with non-IID data. To cope with this, most of the existing works involve enforcing regularization in local optimization or improving the model aggregation scheme at the server. Other works also share public datasets or synthesized samples to supplement the training of under-represented classes or introduce a certain level of personalization. Though effective, they lack a deep understanding of how the data heterogeneity affects each layer of a deep classification model. In this paper, we bridge this gap by performing an experimental analysis of the representations learned by different layers. Our observations are surprising: (1) there exists a greater bias in the classifier than other layers, and (2) the classification performance can be significantly improved by post-calibrating the classifier after federated training. Motivated by the above findings, we propose a novel and simple algorithm called Classifier Calibration with Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated gaussian mixture model. Experimental results demonstrate that CCVR achieves state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10. We hope that our simple yet effective method can shed some light on the future research of federated learning with non-IID data.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Gradient Calibration for Non-IID Federated Learning
    Li, Jiachen
    Zhang, Yuchao
    Li, Yiping
    Gong, Xiangyang
    Wang, Wendong
    PROCEEDINGS OF THE 2023 THE 2ND ACM WORKSHOP ON DATA PRIVACY AND FEDERATED LEARNING TECHNOLOGIES FOR MOBILE EDGE NETWORK, FEDEDGE 2023, 2023, : 119 - 124
  • [2] FedCD: A Classifier Debiased Federated Learning Framework for Non-IID Data
    Long, Yunfei
    Xue, Zhe
    Chu, Lingyang
    Zhang, Tianlong
    Wu, Junjiang
    Zang, Yu
    Du, Junping
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8994 - 9002
  • [3] Federated learning on non-IID data: A survey
    Zhu, Hangyu
    Xu, Jinjin
    Liu, Shiqing
    Jin, Yaochu
    NEUROCOMPUTING, 2021, 465 : 371 - 390
  • [4] Adaptive Federated Learning With Non-IID Data
    Zeng, Yan
    Mu, Yuankai
    Yuan, Junfeng
    Teng, Siyuan
    Zhang, Jilin
    Wan, Jian
    Ren, Yongjian
    Zhang, Yunquan
    COMPUTER JOURNAL, 2023, 66 (11): : 2758 - 2772
  • [5] Federated Learning With Taskonomy for Non-IID Data
    Jamali-Rad, Hadi
    Abdizadeh, Mohammad
    Singh, Anuj
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8719 - 8730
  • [6] Federated Learning With Non-IID Data: A Survey
    Lu, Zili
    Pan, Heng
    Dai, Yueyue
    Si, Xueming
    Zhang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19188 - 19209
  • [7] A Survey of Federated Learning on Non-IID Data
    HAN Xuming
    GAO Minghan
    WANG Limin
    HE Zaobo
    WANG Yanze
    ZTECommunications, 2022, 20 (03) : 17 - 26
  • [8] Cross-Silo Prototypical Calibration for Federated Learning with Non-IID Data
    Qi, Zhuang
    Meng, Lei
    Chen, Zitan
    Hu, Han
    Lin, Hui
    Meng, Xiangxu
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3099 - 3107
  • [9] Non-IID Federated Learning
    Cao, Longbing
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (02) : 14 - 15
  • [10] Logit Calibration for Non-IID and Long-Tailed Data in Federated Learning
    Wang, Huan
    Wang, Lijuan
    Shen, Jun
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 782 - 789