Structure and Photoluminescence Properties of Thermally Synthesized V2O5 and Al-Doped V2O5 Nanostructures

被引:32
|
作者
Wang, Chih-Chiang [1 ]
Lu, Chia-Lun [2 ]
Shieu, Fuh-Sheng [1 ]
Shih, Han C. [1 ,2 ]
机构
[1] Natl Chung Hsing Univ, Dept Mat Sci & Engn, Taichung 40227, Taiwan
[2] Chinese Culture Univ, Dept Chem Engn & Mat Sci, Taipei 11114, Taiwan
关键词
Al-doped V2O5 nanostructures; photoluminescence; vapor-solid mechanism;
D O I
10.3390/ma14020359
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Al-free and Al-doped V2O5 nanostructures were synthesized by a thermal-chemical vapor deposition (CVD) process on Si(100) at 850 degrees C under 1.2 x 10(-1) Torr via a vapor-solid (V-S) mechanism. X-ray diffraction (XRD), Raman, and high-resolution transmission electron microscopy (HRTEM) confirmed a typical orthorhombic V2O5 with the growth direction along [110]-direction of both nanostructures. Metallic Al, rather than Al3+-ion, was detected by X-ray photoelectron spectroscopy (XPS), affected the V2O5 crystallinity. The photoluminescence intensity of V2O5 nanostructure at 1.77 and 1.94 eV decreased with the increasing Al-dopant by about 61.6% and 59.9%, attributing to the metallic Al intercalated between the V2O5-layers and/or filled in the oxygen vacancies, which behaved as electron sinks. Thus the Al-doped V2O5 nanostructure shows the potential applications in smart windows and the electrodic material in a Li-ion battery.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Enhanced visible photoluminescence of V2O5 via coupling ZnO/V2O5 composite nanostructures
    Zou, C. W.
    Yan, X. D.
    Bian, J. M.
    Gao, W.
    OPTICS LETTERS, 2010, 35 (08) : 1145 - 1147
  • [2] Photoluminescence in Nd-doped V2O5
    L. Aquino-Meneses
    R. Lozada-Morales
    P. del Angel-Vicente
    J. C. Percino-Picazo
    O. Zelaya-Angel
    M. Becerril
    J. Carmona-Rodriguez
    F. Rodriguez-Melgarejo
    S. Jiménez-Sandoval
    Journal of Materials Science, 2014, 49 : 2298 - 2302
  • [3] Photoluminescence in Nd-doped V2O5
    Aquino-Meneses, L.
    Lozada-Morales, R.
    del Angel-Vicente, P.
    Percino-Picazo, J. C.
    Zelaya-Angel, O.
    Becerril, M.
    Carmona-Rodriguez, J.
    Rodriguez-Melgarejo, F.
    Jimenez-Sandoval, S.
    JOURNAL OF MATERIALS SCIENCE, 2014, 49 (05) : 2298 - 2302
  • [4] Growth and Electrical Properties of V2O5 Nanostructures
    Saini, Sujit K.
    Singh, Megha
    Kumar, Prabhat
    Sharma, Rabindar K.
    Reddy, G. B.
    3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER & APPLIED PHYSICS (ICC-2019), 2020, 2220
  • [5] Synthesis and electrochemical properties of V2O5 nanostructures
    Wang, Ying
    Cao, Guozhong
    HIGH-PERFORMANCE CERAMICS IV, PTS 1-3, 2007, 336-338 : 2134 - +
  • [6] Geometric and electronic structure of γ-V2O5:: Comparison between α-V2O5 and γ-V2O5 -: art. no. 155114
    Willinger, M
    Pinna, N
    Su, DS
    Schlögl, R
    PHYSICAL REVIEW B, 2004, 69 (15) : 155114 - 1
  • [7] STRUCTURE AND PROPERTIES OF AMORPHOUS V2O5
    NABAVI, M
    SANCHEZ, C
    LIVAGE, J
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1991, 63 (04): : 941 - 953
  • [8] Reduction of the (001) surface of γ-V2O5 compared to α-V2O5
    Ganduglia-Pirovano, MV
    Sauer, J
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (01): : 374 - 380
  • [9] EPR study of RLi2O V2O5, RNa2O V2O5, RCaO V2O5, and RBaO V2O5 modified vanadate glass systems
    McKnight, J. M.
    Whitmore, K. A.
    Bunton, P. H.
    Baker, D. B.
    Vennerberg, D. C.
    Feller, S. A.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (43) : 2268 - 2272
  • [10] A REFINEMENT OF THE STRUCTURE OF V2O5
    ENJALBERT, R
    GALY, J
    ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY, 1986, 42 : 1467 - 1469