On the completeness and the decidability of strictly monadic second-order logic

被引:0
|
作者
Takagi, Kento [1 ]
Kashima, Ryo [1 ]
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528552, Japan
关键词
D O I
10.1002/malq.201900046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regarding strictly monadic second-order logic (SMSOL), which is the fragment of monadic second-order logic in which all predicate constants are unary and there are no function symbols, we show that a standard deductive system with full comprehension is sound and complete with respect to standard semantics. This result is achieved by showing that in the case of SMSOL, the truth value of any formula in a faithful identity-standard Henkin structure is preserved when the structure is "standardized"; that is, the predicate domain is expanded into the set of all unary relations. In addition, we obtain a simpler proof of the decidability of SMSOL. (c) 2021 Wiley-VCH GmbH
引用
收藏
页码:438 / 447
页数:10
相关论文
共 50 条
  • [1] On the Decidability of Monadic Second-Order Logic with Arithmetic Predicates
    Berthe, Valerie
    Karimov, Toghrul
    Nieuwveld, Joris
    Ouaknine, Joel
    Vahanwala, Mihir
    Worrell, James
    PROCEEDINGS OF THE 39TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS 2024, 2024,
  • [2] Monadic Second-Order Logic with Arbitrary Monadic Predicates
    Fijalkow, Nathanael
    Paperman, Charles
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2014, PT I, 2014, 8634 : 279 - 290
  • [3] Monadic Second-Order Logic with Arbitrary Monadic Predicates
    Fijalkow, Nathanael
    Paperman, Charles
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2017, 18 (03)
  • [4] Quantitative Monadic Second-Order Logic
    Kreutzer, Stephan
    Riveros, Cristian
    2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2013, : 113 - 122
  • [5] Computability by monadic second-order logic
    Engelfriet, Joost
    INFORMATION PROCESSING LETTERS, 2021, 167
  • [6] Asymptotic Monadic Second-Order Logic
    Blumensath, Achim
    Carton, Olivier
    Colcombet, Thomas
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2014, PT I, 2014, 8634 : 87 - +
  • [7] Monadic Second-Order Logic on Finite Sequences
    D'Antoni, Loris
    Veanes, Margus
    ACM SIGPLAN NOTICES, 2017, 52 (01) : 232 - 245
  • [8] On the Parameterised Intractability of Monadic Second-Order Logic
    Kreutzer, Stephan
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2009, 5771 : 348 - 363
  • [9] Circle graphs and monadic second-order logic
    LaBRI, Université Bordeaux 1, CNRS, 351 Cours de la libération, 33405 Talence Cedex, France
    Journal of Applied Logic, 2008, 6 (03) : 416 - 442
  • [10] ON THE PARAMETERIZED INTRACTABILITY OF MONADIC SECOND-ORDER LOGIC
    Kreutzer, Stephan
    LOGICAL METHODS IN COMPUTER SCIENCE, 2012, 8 (01)