DeepCRISPR: optimized CRISPR guide RNA design by deep learning

被引:265
|
作者
Chuai, Guohui [1 ,2 ]
Ma, Hanhui [5 ]
Yan, Jifang [1 ,2 ]
Chen, Ming [4 ]
Hong, Nanfang [1 ,2 ]
Xue, Dongyu [1 ,2 ]
Zhou, Chi [1 ,2 ]
Zhu, Chenyu [1 ,2 ]
Chen, Ke [1 ,2 ]
Duan, Bin [1 ,2 ]
Gu, Feng [6 ,7 ,8 ]
Qu, Sheng [1 ,2 ]
Huang, Deshuang [3 ]
Wei, Jia [4 ]
Liu, Qi [1 ,2 ]
机构
[1] Tongji Univ, Dept Endocrinol & Metab, Shanghai Peoples Hosp 10, Shanghai 20009, Peoples R China
[2] Tongji Univ, Sch Life Sci & Technol, Bioinformat Dept, Shanghai 20009, Peoples R China
[3] Tongji Univ, Sch Elect & Informat Engn, Machine Learning & Syst Biol Lab, Shanghai 201804, Peoples R China
[4] AstraZeneca, Innovat Ctr China, R&D Informat, 199 Liangjing Rd, Shanghai 201203, Peoples R China
[5] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
[6] Wenzhou Med Univ, State Key Lab Cultivat Base, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
[7] Wenzhou Med Univ, Key Lab Vis Sci, Minist Hlth, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
[8] Wenzhou Med Univ, Zhejiang Prov Key Lab Ophthalmol & Optometry, Sch Ophthalmol & Optometry, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
来源
GENOME BIOLOGY | 2018年 / 19卷
基金
中国国家自然科学基金;
关键词
CRISPR system; Gene knockout; Deep learning; On-targets; Off-targets; OFF-TARGET CLEAVAGE; GENOME; SEQ; DNA; SPECIFICITIES; PREDICTION; NUCLEASES; SELECTION; SGRNAS;
D O I
10.1186/s13059-018-1459-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A major challenge for effective application of CRISPR systems is to accurately predict the single guide RNA (sgRNA) on-target knockout efficacy and off-target profile, which would facilitate the optimized design of sgRNAs with high sensitivity and specificity. Here we present DeepCRISPR, a comprehensive computational platform to unify sgRNA on-target and off-target site prediction into one framework with deep learning, surpassing available state-of-the-art in silico tools. In addition, DeepCRISPR fully automates the identification of sequence and epigenetic features that may affect sgRNA knockout efficacy in a data-driven manner. DeepCRISPR is available at http://www.deeperispr.net/.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] DeepCRISPR: optimized CRISPR guide RNA design by deep learning
    Guohui Chuai
    Hanhui Ma
    Jifang Yan
    Ming Chen
    Nanfang Hong
    Dongyu Xue
    Chi Zhou
    Chenyu Zhu
    Ke Chen
    Bin Duan
    Feng Gu
    Sheng Qu
    Deshuang Huang
    Jia Wei
    Qi Liu
    Genome Biology, 19
  • [2] Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
    Wang, Daqi
    Zhang, Chengdong
    Wang, Bei
    Li, Bin
    Wang, Qiang
    Liu, Dong
    Wang, Hongyan
    Zhou, Yan
    Shi, Leming
    Lan, Feng
    Wang, Yongming
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [3] Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning
    Daqi Wang
    Chengdong Zhang
    Bei Wang
    Bin Li
    Qiang Wang
    Dong Liu
    Hongyan Wang
    Yan Zhou
    Leming Shi
    Feng Lan
    Yongming Wang
    Nature Communications, 10
  • [4] Deep learning enhancing guide RNA design for CRISPR/Cas12a-based diagnostics
    Huang, Baicheng
    Guo, Ling
    Yin, Hang
    Wu, Yue
    Zeng, Zihan
    Xu, Sujie
    Lou, Yufeng
    Ai, Zhimin
    Zhang, Weiqiang
    Kan, Xingchi
    Yu, Qian
    Du, Shimin
    Li, Chao
    Wu, Lina
    Huang, Xingxu
    Wang, Shengqi
    Wang, Xinjie
    IMETA, 2024, 3 (04):
  • [5] CRISPR guide RNA design for research applications
    Mohr, Stephanie E.
    Hu, Yanhui
    Ewen-Campen, Benjamin
    Housden, Benjamin E.
    Viswanatha, Raghuvir
    Perrimon, Norbert
    FEBS JOURNAL, 2016, 283 (17) : 3232 - 3238
  • [6] Deep learning improves prediction of CRISPR–Cpf1 guide RNA activity
    Hui Kwon Kim
    Seonwoo Min
    Myungjae Song
    Soobin Jung
    Jae Woo Choi
    Younggwang Kim
    Sangeun Lee
    Sungroh Yoon
    Hyongbum (Henry) Kim
    Nature Biotechnology, 2018, 36 : 239 - 241
  • [7] Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity
    Kim, Hui Kwon
    Min, Seonwoo
    Song, Myungjae
    Jung, Soobin
    Choi, Jae Woo
    Kim, Younggwang
    Lee, Sangeun
    Yoon, Sungroh
    Kim, Hyongbum
    NATURE BIOTECHNOLOGY, 2018, 36 (03) : 239 - +
  • [8] Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting
    Wei, Jingyi
    Lotfy, Peter
    Faizi, Kian
    Baungaard, Sara
    Gibson, Emily
    Wang, Eleanor
    Slabodkin, Hannah
    Kinnaman, Emily
    Chandrasekaran, Sita
    Kitano, Hugo
    Durrant, Matthew G.
    Duffy, Connor, V
    Pawluk, April
    Hsu, Patrick D.
    Konermann, Silvana
    CELL SYSTEMS, 2023, 14 (12) : 1087 - 1102.e13
  • [9] Design of Guide RNA for CRISPR/Cas Plant Genome Editing
    Gerashchenkov, G. A.
    Rozhnova, N. A.
    Kuluev, B. R.
    Kiryanova, O. Yu
    Gumerova, G. R.
    Knyazev, A., V
    Vershinina, Z. R.
    Mikhailova, E., V
    Chemeris, D. A.
    Matniyazov, R. T.
    Baimiev, An Kh
    Gubaidullin, I. M.
    Baimiev, Al Kh
    Chemeris, A., V
    MOLECULAR BIOLOGY, 2020, 54 (01) : 24 - 42
  • [10] Design of Guide RNA for CRISPR/Cas Plant Genome Editing
    G. A. Gerashchenkov
    N. A. Rozhnova
    B. R. Kuluev
    O. Yu. Kiryanova
    G. R. Gumerova
    A. V. Knyazev
    Z. R. Vershinina
    E. V. Mikhailova
    D. A. Chemeris
    R. T. Matniyazov
    An. Kh. Baimiev
    I. M. Gubaidullin
    Al. Kh. Baimiev
    A. V. Chemeris
    Molecular Biology, 2020, 54 : 24 - 42