Improving the INLA approach for approximate Bayesian inference for latent Gaussian models

被引:26
|
作者
Ferkingstad, Egil [1 ,2 ]
Rue, Havard [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7034 Trondheim, Norway
[2] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland
来源
ELECTRONIC JOURNAL OF STATISTICS | 2015年 / 9卷 / 02期
关键词
Bayesian computation; copulas; generalized linear mixed models; integrated nested Laplace approximation; latent Gaussian models; LINEAR MIXED MODELS; LAPLACE APPROXIMATION;
D O I
10.1214/15-EJS1092
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new copula-based correction for generalized linear mixed models (GLMMs) within the integrated nested Laplace approximation (INLA) approach for approximate Bayesian inference for latent Gaussian models. While INLA is usually very accurate, some (rather extreme) cases of GLMMs with e. g. binomial or Poisson data have been seen to be problematic. Inaccuracies can occur when there is a very low degree of smoothing or "borrowing strength" within the model, and we have therefore developed a correction aiming to push the boundaries of the applicability of INLA. Our new correction has been implemented as part of the R-INLA package, and adds only negligible computational cost. Empirical evaluations on both real and simulated data indicate that the method works well.
引用
收藏
页码:2706 / 2731
页数:26
相关论文
共 50 条
  • [1] Max-and-Smooth: A Two-Step Approach for Approximate Bayesian Inference in Latent Gaussian Models
    Hrafnkelsson, Birgir
    Siegert, Stefan
    Huser, Raphael
    Bakka, Haakon
    Johannesson, Arni, V
    BAYESIAN ANALYSIS, 2021, 16 (02): : 611 - 638
  • [2] Joint posterior inference for latent Gaussian models with R-INLA
    Chiuchiolo, Cristian
    van Niekerk, Janet
    Rue, Havard
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (05) : 723 - 752
  • [3] Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    Rue, Havard
    Martino, Sara
    Chopin, Nicolas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 319 - 392
  • [4] Latent tree models and approximate inference in Bayesian networks
    Wang, Yi
    Zhang, Nevin L.
    Chen, Tao
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2008, 32 : 879 - 900
  • [5] Bayesian Inference for Multivariate Spatial Models with INLA
    Palmi-Perales, Francisco
    Gomez-Rubio, Virgilio
    Bivand, Roger S.
    Cameletti, Michela
    Rue, Havard
    R JOURNAL, 2023, 15 (03): : 172 - 190
  • [6] INLA plus : approximate Bayesian inference for non-sparse models using HPC
    Abdul Fattah, Esmail
    Van Niekerk, Janet
    Rue, Havard
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [7] Perturbative Corrections for Approximate Inference in Gaussian Latent Variable Models
    Opper, Manfred
    Paquet, Ulrich
    Winther, Ole
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2857 - 2898
  • [8] Bayesian covariance estimation and inference in latent Gaussian process models
    Earls, Cecilia
    Hooker, Giles
    STATISTICAL METHODOLOGY, 2014, 18 : 79 - 100
  • [9] Fully Bayesian Inference for Latent Variable Gaussian Process Models
    Yerramilli, Suraj
    Iyer, Akshay
    Chen, Wei
    Apley, Daniel W.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2023, 11 (04): : 1357 - 1381
  • [10] Approximate Bayesian inference for hierarchical Gaussian Markov random field models
    Rue, Havard
    Martino, Sara
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (10) : 3177 - 3192