Photoluminescence and Magnetism in Mn2+-Doped ZnO Nanostructures Grown Rapidly by the Microwave Hydrothermal Method

被引:51
|
作者
Romeiro, Fernanda C. [1 ]
Marinho, Juliane Z. [1 ]
Silva, Anielle Christine A. [2 ]
Cano, Nilo F. [3 ]
Dantas, Noelio O. [2 ]
Lima, Renata C. [1 ]
机构
[1] Univ Fed Uberlandia, Inst Quim, BR-38400902 Uberlandia, MG, Brazil
[2] Univ Fed Uberlandia, Inst Fis, LNMIS, BR-38400902 Uberlandia, MG, Brazil
[3] Univ Fed Sao Paulo, Dept Ciencias Mar, BR-11030400 Santos, Brazil
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2013年 / 117卷 / 49期
基金
巴西圣保罗研究基金会;
关键词
SOL-GEL; PARAMAGNETIC-RESONANCE; OPTICAL-PROPERTIES; NANOCRYSTALS; NANOPARTICLES; TEMPERATURE; MANGANESE; EMISSION; EPR;
D O I
10.1021/jp408993y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zn1-xMnxO nanostructures were synthesized via the microwave-assisted hydrothermal method, which rapidly produces particles of controlled size and morphology. Samples were analyzed considering the effects of manganese ion concentration. XRD revealed that all samples had wurtzite-type structure with Mn2+ ions incorporated in the oxide lattice. UV-vis spectra showed absorption bands from the d-d transitions of Mn2+ ions. As the doping concentration increased, the value of the energy gap decreased, indicating intermediary energy levels within the band gap in the Mn-doped ZnO samples. All samples produced broadband photoluminescence (PL) emissions in the yellow-orange-red range. Additionally, the PL intensity decreased with Mn2+ ion incorporation into the ZnO lattice due to the creation of new recombination centers. Microscopy images showed that manganese in the ZnO matrix produced homogeneously distributed nanostructures. EPR results indicated two locations of Mn2+ ions in the ZnO lattice, lower concentrations in the core of the lattice and higher concentrations at the surface.
引用
收藏
页码:26222 / 26227
页数:6
相关论文
共 50 条
  • [1] Ferromagnetism in colloidal Mn2+-doped ZnO nanocrystals
    Meron, T
    Markovich, G
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (43): : 20232 - 20236
  • [2] Photoluminescence of Mn2+-doped ZnS nanoparticles synthesized in microemulsion
    Yan, Liangguo
    Zhang, Weimin
    Yang, Jian
    Xin, Xiaodong
    Yu, Haiqin
    LUMINESCENCE, 2010, 25 (02) : 149 - 150
  • [3] Synthesis and photoluminescence properties of Mn2+-doped ZnS by co-precipitation method
    Yu, Haiqin
    Wang, Jingang
    Xin, Xiaodong
    Yang, Jian
    Yan, Liangguo
    LUMINESCENCE, 2010, 25 (02) : 150 - 151
  • [4] Hydrothermal synthesis of molybdenum doped ZnO nanostructures and its photoluminescence property
    Liu, Xin
    Lv, Wei
    Lv, Bing-Jie
    Wang, Xiao-Lei
    Faguang Xuebao/Chinese Journal of Luminescence, 2013, 34 (09): : 1122 - 1127
  • [5] Photoluminescence properties of un-doped and Mn-doped ZnO nanostructures
    Thandavan, Tamil Many K.
    Wong, Chiow San
    Gani, Siti Meriam Abdul
    Nor, Roslan Md
    MATERIALS EXPRESS, 2014, 4 (06) : 475 - 482
  • [6] Synthesis and photoluminescence enhancement of Mn2+-doped ZnS nanocrystals
    Lu, SW
    Lee, BI
    Wang, ZL
    Tong, WS
    Wagner, BK
    Park, W
    Summers, CJ
    JOURNAL OF LUMINESCENCE, 2000, 92 (1-2) : 73 - 78
  • [7] Thermal studies of Mn2+-doped ZnO powders formation by sol–gel method
    Cristina Maria Vladut
    Susana Mihaiu
    Oana Cătălina Mocioiu
    Irina Atkinson
    Jeanina Pandele-Cusu
    Elena Maria Anghel
    Jose Maria Calderon-Moreno
    Maria Zaharescu
    Journal of Thermal Analysis and Calorimetry, 2019, 135 : 2943 - 2951
  • [8] Photoluminescence Analysis of Energy Level on Li-Doped ZnO Nanowires Grown by a Hydrothermal Method
    Lee, Sang Hyo
    Lee, Jun Seok
    Ko, Won Bae
    Sohn, Jung Inn
    Cha, Seung Nam
    Kim, Jong Min
    Park, Young Jun
    Hong, Jin Pyo
    APPLIED PHYSICS EXPRESS, 2012, 5 (09)
  • [9] Co2+ doped ZnO nanoflowers grown by hydrothermal method
    Aneesh, Pacheri Madathil
    Cherian, Christie Thomas
    Jayaraj, Madambi K.
    Endo, Tamio
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2010, 118 (1377) : 333 - 336