A posteriori error estimation and adaptive strategy for the control of MsFEM computations

被引:13
|
作者
Chamoin, Ludovic [1 ,2 ]
Legoll, Frederic [2 ,3 ]
机构
[1] Univ Paris Saclay, CNRS, ENS Cachan, LMT, 61 Ave President Wilson, F-94235 Cachan, France
[2] Inria Paris, MATHERIALS Project Team, 2 Rue Simone Iff,CS 42112, F-75589 Paris 12, France
[3] Paris Est Univ, ENPC, Lab Navier, 6 & 8 Ave Blaise Pascal, F-77455 Marne La Vallee 2, France
关键词
Multiscale problems; MsFEM approach; A posteriori error estimation; Adaptivity; FINITE-ELEMENT-METHOD; ELLIPTIC PROBLEMS; MULTISCALE METHODS; BOUNDS; HOMOGENIZATION; APPROXIMATIONS; CONVERGENCE; GUARANTEED;
D O I
10.1016/j.cma.2018.02.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce quantitative and robust tools to control the numerical accuracy in simulations performed using the Multiscale Finite Element Method (MsFEM). First, we propose a guaranteed and fully computable a posteriori error estimate for the global error measured in the energy norm. It is based on dual analysis and the Constitutive Relation Error (CRE) concept, with recovery of equilibrated fluxes from the approximate MsFEM solution. Second, the estimate is split into several indicators, associated to the various MsFEM error sources, in order to drive an adaptive procedure. The overall strategy thus enables to automatically identify an appropriate trade-off between accuracy and computational cost in the MsFEM numerical simulations. Furthermore, the strategy is compatible with the offline/online paradigm of MsFEM. The performances of our approach are demonstrated in several numerical experiments. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 50 条
  • [1] Goal-oriented error estimation and adaptivity in MsFEM computations
    Ludovic Chamoin
    Frédéric Legoll
    Computational Mechanics, 2021, 67 : 1201 - 1228
  • [2] Goal-oriented error estimation and adaptivity in MsFEM computations
    Chamoin, Ludovic
    Legoll, Frederic
    COMPUTATIONAL MECHANICS, 2021, 67 (04) : 1201 - 1228
  • [3] Correction to: Goal-oriented error estimation and adaptivity in MsFEM computations
    Ludovic Chamoin
    Frédéric Legoll
    Computational Mechanics, 2021, 68 : 229 - 230
  • [4] A posteriori error estimation and adaptive strategy for a nonlinear fractional differential equation
    Liu, Li-Bin
    Chen, Yanping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (02) : 240 - 246
  • [5] An Introductory Review on A Posteriori Error Estimation in Finite Element Computations
    Chamoin, Ludovic
    Legoll, Frederic
    SIAM REVIEW, 2023, 65 (04) : 963 - 1028
  • [6] Adaptive meshing for nanophotonicsusing a posteriori error estimation
    Svardsby, Albin J.
    Tassin, Philippe
    OPTICS EXPRESS, 2024, 32 (14): : 24592 - 24602
  • [7] A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor
    Strouboulis, T
    Babuska, I
    Datta, DK
    Copps, K
    Gangaraj, SK
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 181 (1-3) : 261 - 294
  • [8] Goal-oriented error estimation and adaptivity in MsFEM computations (vol 67, pg 1201, 2021)
    Chamoin, Ludovic
    Legoll, Frederic
    COMPUTATIONAL MECHANICS, 2021, 68 (01) : 229 - 230
  • [9] Error estimation for adaptive computations of shell structures
    Díez, Pedro
    Huerta, Antonio
    Revue Europeenne des Elements, 2000, 9 (1-3): : 49 - 66
  • [10] Posteriori error estimation and adaptive meshing using error in constitutive relation
    Univ of Liege, Liege, Belgium
    IEEE Trans Magn, 3 /1 (1369-1372):