Combining CSG modeling with soft blending using Lipschitz-based implicit surfaces

被引:4
|
作者
Dekkers, D [1 ]
van Overveld, K [1 ]
Golsteijn, R [1 ]
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
来源
VISUAL COMPUTER | 2004年 / 20卷 / 06期
关键词
implicit surface; smooth blending; Lipschitz condition;
D O I
10.1007/s00371-002-0198-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper a general method is given for combining CSG modeling with soft blending using implicit surfaces. A class of various blending functions sharing some desirable properties like differentiability and intuitive blend control are given. The functions defining the CSG objects satisfy the Lipschitz condition that gives the possibility of fast root finding but can also prove useful in the field of collision detection and adaptive triangulation.
引用
收藏
页码:380 / 391
页数:12
相关论文
共 50 条
  • [1] Combining CSG modeling with soft blending using Lipschitz-based implicit surfaces
    Daniel Dekkers
    Kees van Overveld
    Rob Golsteijn
    The Visual Computer, 2004, 20 : 380 - 391
  • [2] Efficient Lipschitz function evaluation for CSG implicit surfaces
    Nguyen, P
    van de Wetering, H
    INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDING, 2001, : 99 - 103
  • [3] Extending the CSG tree. Warping, blending and Boolean operations in an implicit surface modeling system
    Wyvill, B
    Guy, A
    Galin, E
    COMPUTER GRAPHICS FORUM, 1999, 18 (02) : 149 - 158
  • [4] Traffic Density Modeling and Estimation on Stretched Highways: The Case for Lipschitz-Based Observers
    Nugroho, Sebastian A.
    Taha, Ahmad F.
    Claudel, Christian
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 2658 - 2663
  • [5] Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and tactile exploration
    Gandler, Gabriela Zarzar
    Ek, Carl Henrik
    Bjorkman, Marten
    Stolkin, Rustam
    Bekiroglu, Yasemin
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2020, 126
  • [6] Modeling terminal ballistics using blending-type spline surfaces
    Pedersen, Aleksander
    Bratlie, Jostein
    Dalmo, Rune
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2014), 2014, 1637 : 796 - 803
  • [7] A novel hybrid deep CNN model for breast cancer classification using Lipschitz-based image augmentation and recursive feature elimination
    Kollem, Sreedhar
    Sirigiri, Chandrasekhar
    Peddakrishna, Samineni
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
  • [8] Blending multiple parametric normal ringed surfaces using implicit functional splines and auxiliary spheres
    Zhou, Pei
    Qian, Wen-Han
    GRAPHICAL MODELS, 2011, 73 : 87 - 96
  • [9] Anatomic modeling from unstructured samples using variational implicit surfaces
    Yoo, TS
    Morse, B
    Subramanian, KR
    Rheingans, P
    Ackerman, MJ
    MEDICINE MEETS VIRTUAL REALITY 2001: OUTER SPACE, INNER SPACE, VIRTUAL SPACE, 2001, 81 : 594 - 600
  • [10] AlexNet-NDTL: Classification of MRI brain tumor images using modified AlexNet with deep transfer learning and Lipschitz-based data augmentation
    Kollem, Sreedhar
    Reddy, Katta Ramalinga
    Prasad, Ch. Rajendra
    Chakraborty, Avishek
    Ajayan, J.
    Sreejith, S.
    Bhattacharya, Sandip
    Joseph, L. M. I. Leo
    Janapati, Ravichander
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (04) : 1306 - 1322