Numerical simulation of a rising CO2 droplet in the initial accelerating stage by a multiphase lattice Boltzmann method

被引:13
|
作者
Jiang, Fei [1 ,3 ]
Hu, Changhong [2 ,3 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Fukuoka 8168580, Japan
[2] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8168580, Japan
关键词
Rising CO2 droplet; Multi-phase flow simulation; Lattice Boltzmann method; Carbon capture and storage; GPU computing; BOUNDARY-CONDITIONS; FLOWS; GRAVITY; MODEL; GAS;
D O I
10.1016/j.apor.2013.06.005
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A multi-phase flow model which applies lattice Boltzmann method (LBM) is developed for numerical simulation of the initial accelerating stage of a rising CO2 droplet in the deep ocean. In the present LBM model, a multiple-relaxation time (MRT) collision operator is adopted to increase the numerical stability, and a color model is used to treat the two-phase fluid. A domain shift scheme is proposed to make the long distance calculation available. The computation is accelerated by using the GPU computing and correspondent parallel implementation techniques are developed. The proposed numerical model is first validated against several benchmark problems: Laplace law test, binary Poiseuille flow problem and rise of a toluene droplet. Then numerical simulation of a liquid CO2 droplet rising from quiescence to its steady state is carried out and the results are compared to a laboratory experiment. Excellent agreement is obtained on both terminal velocity and variation of droplet shape. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Numerical simulation of droplet evaporation in three-component multiphase flows using lattice Boltzmann method
    Latifiyan, Navid
    Rahimian, Mohammad Hassan
    Haghani-Hassan-Abadi, Reza
    Ashna, Mostafa
    Jafari, Azadeh
    ACTA MECHANICA, 2022, 233 (11) : 4817 - 4849
  • [2] Numerical simulation of droplet evaporation in three-component multiphase flows using lattice Boltzmann method
    Navid Latifiyan
    Mohammad Hassan Rahimian
    Reza Haghani-Hassan-Abadi
    Mostafa Ashna
    Azadeh Jafari
    Acta Mechanica, 2022, 233 : 4817 - 4849
  • [3] Modeling and Simulation of Droplet Wettability Using Multiphase Lattice Boltzmann Method (LBM)
    Yuana, Kumara Ari
    Budiana, Eko Prasetyo
    Deendarlianto
    Indarto
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192
  • [4] Numerical simulation of droplet evaporation on a hot surface near Leidenfrost regime using multiphase lattice Boltzmann method
    Karami, Naser
    Rahimian, Mohammad Hassan
    Farhadzadeh, Mohsen
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 312 : 91 - 108
  • [5] Numerical simulation of pulmonary airway reopening by the multiphase lattice Boltzmann method
    He, Bing
    Qin, Chunyan
    Chen, Wenbo
    Wen, Binghai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 108 : 196 - 205
  • [6] Numerical simulation of droplet formation in a microchannel using the lattice Boltzmann method
    Kim, Lae Sung
    Kim, Hyo Geun
    Jeong, Hae Kwon
    Ha, Man Yeong
    Kim, Kyung Chun
    PROCEEDINGS OF THE 3RD ASIAN CONFERENCE ON REFRIGERATION AND AIR-CONDITIONING VOLS I AND II, 2006, : 529 - +
  • [7] Numerical simulation of bubble rising in porous media using lattice Boltzmann method
    Lou, Qin
    Yan, Yu
    Xu, Hongtao
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (19)
  • [8] Simulation of falling droplet by the lattice Boltzmann method
    Fakhari, Abbas
    Rahimian, Mohammad Hassan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (07) : 3046 - 3055
  • [9] Comparison between volume of fluid method and lattice Boltzmann method for numerical simulation of droplet
    Imamura, T
    Suzuki, K
    COMPUTATIONAL FLUID DYNAMICS 2000, 2001, : 505 - 510
  • [10] Numerical simulation of droplet dynamics on chemically heterogeneous surfaces by lattice Boltzmann method
    Wang, Xin
    Xu, Bo
    Chen, Z.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (02) : 607 - 624